Organic & Biomolecular Chemistry
Communication
Our preliminary mechanistic study suggests that 3 binds to
nickel via its phosphinous acid based tautomer. More detailed
mechanistic investigations of the proposed catalytic species
are currently in progress.
C.-M. Weng and F.-E. Hong, Organometallics, 2011, 30,
1139–1147; (k) Y.-C. Chang, W.-C. Chang, C.-Y. Hu and
F.-E. Hong, Organometallics, 2014, 33, 3523–3534; (l) F. Hu,
B. N. Kumpati and X. Lei, Tetrahedron Lett., 2014, 55, 7215–
7218.
7 SPOs used for catalytic cycloaddition reactions:
(a) J. Bigeault, L. Giordano and G. Buono, Angew. Chem.,
Int. Ed., 2005, 44, 4753–4757; (b) J. Bigeault, L. Giordano,
I. de Riggi, Y. Gimbert and G. Buono, Org. Lett., 2007, 9,
3567–3570; (c) J. Bigeault, I. de Riggi, Y. Gimbert,
L. Giordano and G. Buono, Synlett, 2008, 1071–1075;
(d) D. Gatineau, D. Moraleda, J.-V. Naubron, T. Bürgi,
L. Giordano and G. Buono, Tetrahedron: Asymmetry, 2009,
20, 1912–1917; (e) T. Achard, A. Lepronier, Y. Gimbert,
H. Clavier, L. Giordano, A. Tenaglia and G. Buono, Angew.
Chem., Int. Ed., 2011, 50, 3552–3556; (f) F. Schröder,
C. Tugny, E. Salanouve, H. Clavier, L. Giodano,
D. Moraleda, Y. Gimbert, V. Mouriès-Mansuy, J.-P. Goddard
and L. Fensterbank, Organometallics, 2014, 33, 4051–4056.
8 SPOs used for catalytic hydration of nitriles:
(a) S. M. M. Knapp, T. J. Sherbow, R. B. Yelle, J. J. Juliette
and D. R. Tyler, Organometallics, 2013, 32, 3744–3752;
(b) E. Tomás-Mendivil, F. J. Suárez, J. Díez and V. Cadierno,
Chem. Commun., 2014, 50, 9661–9664.
Acknowledgements
We thank the U.S. National Science Foundation (CHE-0952083
and CHE-1464734) and the Alfred P. Sloan Foundation for
support of this research.
Notes and references
1 (a) N. V. Dubrovina and A. Börner, Angew. Chem., Int. Ed.,
2004, 43, 5883–5886; (b) L. Ackermann, Synthesis, 2006,
1557–1571; (c) L. Ackermann, R. Born, J. H. Spatz,
A. Althammer and C. J. Gschrei, Pure Appl. Chem., 2006, 78,
209–214; (d) L. Ackermann, Synlett, 2007, 507–526;
(e) T. Nemoto and Y. Hamada, Chem. Rec., 2007, 7, 150–
158; (f) L. Ackermann, Isr. J. Chem., 2010, 50, 652–663;
(g) T. Nemoto and Y. Hamada, Tetrahedron, 2011, 67, 667–
687; (h) T. M. Shaikh, C.-M. Weng and F.-E. Hong, Coord.
Chem. Rev., 2012, 256, 771–803.
9 SPOs used for catalytic hydrocarbamoylation of alkenes:
P. A. Donets and N. Cramer, J. Am. Chem. Soc., 2013, 135,
11772–11775.
2 (a) P. N. Kapoor, R. Saraswati and I. J. McMahon, Inorg.
Chim. Acta, 1985, 110, 63–68; (b) F. A. Cotton, P. A. Kibala
and C. S. Miertschin, Inorg. Chem., 1991, 30, 548–553; 10 SPO-decorated nanoparticles for catalytic hydrogenation
(c) D. Magiera, A. Szmigielska, K. M. Pietrusiewicz and
H. Duddeck, Chirality, 2004, 16, 57–64; (d) S. Teo, Z. Weng
and T. S. A. Hor, Organometallics, 2008, 27, 4188–4192;
(e) L. V. Graux, M. Giorgi, G. Buono and H. Clavier, Organo-
metallics, 2015, 34, 1864–1871.
3 P. Sutra and A. Igau, Coord. Chem. Rev., 2015, DOI: 10.1016/
j.ccr.2015.07.002, article in press.
4 D. Martin, D. Moraleda, T. Achard, L. Giordano and
G. Buono, Chem. – Eur. J., 2011, 17, 12729–12740.
5 (a) G. Y. Li, Angew. Chem., Int. Ed., 2001, 40, 1513–1516;
reactions: (a) E. Rafter, T. Gutmann, F. Löw,
G. Buntkowsky, K. Philippot, B. Chaudret and P. W. N.
M. van Leeuwen, Catal. Sci. Technol., 2013, 3, 595–599;
(b) I. Cano, A. M. Chapman, A. Urakawa and P. W. N.
M. van Leeuwen, J. Am. Chem. Soc., 2014, 136, 2520–2528;
(c) I. Cano, M. A. Huertos, A. M. Chapman, G. Buntkowsky,
T. Gutmann, P. B. Groszewicz and P. W. N. M. van
Leeuwen, J. Am. Chem. Soc., 2015, 137, 7718–7727.
11 J. Zhang, C. M. Medley, J. A. Krause and H. Guan, Organo-
metallics, 2010, 29, 6393–6401.
(b) G. Y. Li, G. Zheng and A. F. Noonan, J. Org. Chem., 2001, 12 (a) K. R. Dixon and A. D. Rattray, Can. J. Chem., 1971, 49,
66, 8677–8681; (c) G. Y. Li, J. Org. Chem., 2002, 67, 3643–
3650; (d) G. Y. Li, J. Organomet. Chem., 2002, 653, 63–68;
(e) D. X. Yang, S. L. Colletti, K. Wu, M. Song, G. Y. Li and
H. C. Shen, Org. Lett., 2009, 11, 381–384.
3997–4004; (b) I. W. Robertson and T. A. Stephenson, Inorg.
Chim. Acta, 1980, 45, L215–L216; (c) E. Y. Y. Chan,
Q.-F. Zhang, Y.-K. Sau, S. M. F. Lo, H. H. Y. Sung,
I. D. Williams, R. K. Haynes and W.-H. Leung, Inorg. Chem.,
2004, 43, 4921–4926; (d) I. Pryjomska, H. Bartosz-Bechowski,
Z. Ciunik, A. M. Trzeciak and J. J. Ziółkowski, Dalton Trans.,
2006, 213–220; (e) R. Thota, D. Lesage, Y. Gimbert,
L. Giordano, S. Humbel, A. Milet, G. Buono and J.-C. Tabet,
Organometallics, 2009, 28, 2735–2743; (f) A. Christiansen,
D. Selent, A. Spannenberg, W. Baumann, R. Franke and
A. Börner, Organometallics, 2010, 29, 3139–3145;
(g) T. Achard, L. Giordano, A. Tenaglia, Y. Gimbert and
G. Buono, Organometallics, 2010, 29, 3936–3950;
(h) N. Allefeld, J. Bader, B. Neumann, H.-G. Stammler,
N. Ignat’ev and B. Hoge, Inorg. Chem., 2015, 54, 7945–7952.
6 (a) C. Wolf and R. Lerebours, J. Org. Chem., 2003, 68, 7077–
7084; (b) L. Ackermann and R. Born, Angew. Chem., Int. Ed.,
2005, 44, 2444–2447; (c) L. Ackermann, Org. Lett., 2005, 7,
3123–3125; (d) L. Ackermann, A. Althammer and R. Born,
Angew. Chem., Int. Ed., 2006, 45, 2619–2622;
(e) L. Ackermann and A. Althammer, Org. Lett., 2006, 8,
3457–3460; (f) C.-H. Wei, C.-E. Wu, Y.-L. Huang,
R. G. Kultyshev and F.-E. Hong, Chem. – Eur. J., 2007, 13,
1583–1593; (g) L. Ackermann and M. Mulzer, Org. Lett.,
2008, 10, 5043–5045; (h) L. Ackermann, A. R. Kapdi and
C. Schulzke, Org. Lett., 2010, 12, 2298–2301;
(i) L. Ackermann, S. Barfüsser, C. Kornhaass and 13 L.-Y. Jung, S.-H. Tsai and F.-E. Hong, Organometallics, 2009,
A. R. Kapdi, Org. Lett., 2011, 13, 3082–3085; ( j) D.-F. Hu,
28, 6044–6053.
This journal is © The Royal Society of Chemistry 2015
Org. Biomol. Chem.