404
A. Montero et al. / Tetrahedron Letters 46 (2005) 401–405
S.; Bravin, F.; Bellucci, M. C.; Bruche, L.; Colombo, G.;
17. The analytical and spectroscopic data for 11 and 12 are
indicated below. To identify the signal assignations (that
have been done by a combination of mono- and bi-
dimensional NMR experiments), we have numbered the
atoms in the following manner: unprimed number refer to
the pyrane ring and the dipeptide fragment (including
the side chains of the amino acids), starting from the
pyranosidic oxygen; the primed number (0) indicate the
carbon and hydrogen atoms in the allyloxy fragment; and
the double-primed (00) numbers denote atoms in the
tyrosine derivative fragment (including the side chain).
Malpezzi, L.; Mazzini, S.; Meille, S. V.; Meli, M.; Ramirez
de Arellano, C.; Zanda, M. Chem. Eur. J. 2003, 9, 4510–
4522, and references cited therein.
7. All the new compounds gave satisfactory analytical (C, H,
N, 0.3%) and spectroscopic (1H and 13C NMR, IR, MS)
data (for compounds 11 and 12, see Ref. 17).
8. (a) Overman, L. E. J. Am. Chem. Soc. 1974, 96, 597–599;
(b) Overman, L. E. J. Am. Chem. Soc. 1976, 98, 2901–
2910.
9. Nishikawa, T.; Asai, M.; Ohyabu, N.; Isobe, M. J. Org.
Chem. 1998, 63, 188–192.
1
Peptide 11: Mp: 128–130 °C; [a]D +7 (c 0.3, MeOH); H
10. Interestingly, when trichloroacetimidate 4 was subjected
without any purification to the Overman rearrangement
conditions, the allylic chloride 13 was isolated as sole
product in 50% yield instead of the expected trichloroacet-
amide 4. Remarkably, the reaction took place in a total
stereoselective way, affording exclusively the 3b-chloro
diastereoisomer; its configuration was firmly established
on the basis of NOESY experiments and the X-ray crystal
structure of a p-nitrobenzoyl derivative. As other allylic
chlorides [Jeganmohan, M.; Shanmugasundaram, M.;
Cheng, C. Org. Lett. 2003, 5, 881–884], compound 13
can be a valuable synthetic intermediate. In addition, this
compound has proved useful for the synthesis of haloge-
nated sugars and peptide–carbohydrate hybrids, [Mon-
NMR (300 MHz, 40 °C, DMSO-d6) d 9.06 (s, 1H, OH),
8.51 (d, 1H, J11,9 = 8.5, NH-11), 8.12 (t, 1H, J1 ,7 = 5.6,
00
NH-100), 7.91 (m, 2H, Harom; 1H, NH-8; 1H, NH-16), 7.80
00
00 00
(d, 1H, J4 ,2 = 8.0, NH-4 ), 7.72 (m, 4H, Harom), 7.46 (m,
3H, Harom), 7.20 (m, 5H, Harom), 7.12 (d, 2H, Jortho = 8.3,
arom-Tyr), 6.62 (d, 2H, Jortho = 8.5, Harom-Tyr), 5.91 (d,
H
1H, J5,4 = 10.5, H-5), 5.85 (C of ABCXY, 1H, H-20), 5.66
(dd, 1H, J4,5 = 10.5, J4,3 = 3.9, H-4), 5.24 (A of ABCXY,
1H, J4 ,2 = 17.1, H-40), 5.12 (B of ABCXY, 1H,
0
0
J3 ,2 = 10.5, H-30), 4.66 (m, 1H, H-9), 4.54 (m, 1H, H-
0
0
200), 4.53 (s, 1H, H-2), 4.19 (m, 1H, H-12), 4.07 (X de
ABCXY, 1H, J1 a,1 b = 13.2, J1 a,2 = 6.0, H-10a), 4.11 (X0
0
0
0
0
of A0B0X0, 1H, H-6), 4.00 (m, 1H, H-3), 3.97 (Y of
ABCXY, 1H, J1 b,1 a = 13.2, J1 a,2 = 5.6, H-10b), 3.39 (A0
of A0B0X0, 1H, J7a,7b = 12.9, J7a,6 = 6.1, H-7a), 3.20 (B0 of
A0B0X0, 1H, J7b,7a = 12.9, J7b,6 = 3.7, H-7b), 2.89 (m, 4H,
H-10, H-300), 1.82 (s, 3H, COCH3), 1.48 (m, 1H, H-14),
1.31 (m, 2H, H-13), 0.83 (d, 3H, J = 6.6, H-15), 0.78 (d,
J = 6.6, H-15); 13C NMR (75 MHz, 40 °C, DMSO-d6) d
171.9 (s, CO), 171.8 (CO), 170.5 (s, CO), 169.3 (s, CO),
165.8 (s, CO), 155.7 (s, Carom), 142.8 (s, Carom), 139.1 (s,
0
0
0
0
´
tero, A.; Benito, E.; Herradon, B., in preparation].
t
Me2 BuSiO
O
O
Cl
C
arom), 137.5 (s, Carom), 134.4 (d, C-20), 132.8 (s, Carom),
130.0(d, 2C, Carom), 129.2 (d, 2C, Carom), 129.0 (d, 2C,
13
C
C
arom), 128.6 (d, C-5), 128.4 (d, Carom), 128.1 (d, 2C,
arom), 127.9 (d, 2C, Carom), 126.8 (d, 2C, Carom), 123.2 (d,
11. For synthetic applications of related compounds, see: (a)
Takeda, K.; Kaji, E.; Konda, Y.; Sato, N.; Nakamura, H.;
Miya, N.; Morizane, A.; Yanagisawa, Y.; Akiyama, A.;
Zen, S.; Harigaya, Y. Tetrahedron Lett. 1992, 33, 7145–
7148; (b) Donohoe, T. J.; Blades, K.; Helliwell, M. Chem.
Commun. 1999, 1733–1734; (c) Blades, K.; Donohoe, T. J.;
Winter, J. J. G.; Stemp, G. Tetrahedron Lett. 2000, 41,
4701–4704; (d) Kriek, N. M. A. J.; van der Hout, E.;
Kelly, P.; van Meijgaarden, K. E.; Geluk, A.; Ottenhoff,
T. H. M.; van der Marel, G. A.; Overhand, M.; van Boom,
J. H.; Valentijn, A. R. P. M.; Overkleeft, H. S. Eur. J. Org.
Chem. 2003, 22, 2418–2427; (e) Donohoe, T. J.; Logan, J.
G.; Laffan, D. D. P. Org. Lett. 2003, 5, 4995–4998.
2C, Carom), 122.6 (d, Carom), 122.5 (d, C-4), 116.8 (t,
CH@CH2), 114.8 (d, 2C, Carom), 97.5 (d, C-2), 67.5 (t,
C-10), 66.2 (d, C-6), 55.4 (d, C-9), 53.4 (d, C-200), 51.1 (d,
C-12), 45.1 (d, C-3), 42.1 (t, C-13), 37.5 (t, C-7), 36.5 (t,
C-10 or C-300), 36.4 (t, C-300 or C-10), 24.1 (d, C-14), 22.8
(q, C-15), 23.4 (q, C-15), 21.6 (q, COCH3); IR (KBr) m
3430, 3287, 3061, 2956, 2920, 2861, 1640, 1541, 1384, 1276,
1115, 700; MS (ES+) m/z = 830 ([MꢀH]+, 100%); Anal.
Calcd for C48H55N8O8: C, 69.46; H, 6.68; N, 8.44. Found:
C, 69.46; H, 6.58; N, 8.35. Peptide 12: Mp: 150–152 °C;
[a]D +28 (c 0.25, MeOH); 1H NMR (300 MHz, 40 °C,
DMSO-d6) d 9.42 (d, 1H, J15,12 = 7.7, NH-15), 8.14 (d, 1H,
J11,9 = 7.9, NH-11), 8.06 (d, 1H, J8,3 = 8.2, NH-8), 8.01
´
12. (a) Montero, A.; Mann, E.; Chana, A.; Herradon, B.
Chem. Biodiv. 2004, 1, 442–457; (b) Montero, A.; Alonso,
(t, 1H, J1 ,7 = 5.5, NH-100), 7.96 (d, 1H, J4 ,2 = 9.1,
NH-400), 7.69 (d, 2H, Jortho = 8.4, Harom-tolyl), 7.63 (d,
2H, Jortho = 8.6, Harom-tolyl), 7.45 (d, 2H, Jortho = 8.6,
00
00 00
M.; Benito, E.; Chana, A.; Mann, E.; Navas, J. M.;
´
Herradon, B. Bioorg. Med. Chem. Lett. 2004, 14, 2753–
2757; (c) Montero, A.; Albericio, F.; Royo, M.; Herradon,
´
Harom-tolyl), 7.42 (d, 2H, Jortho = 8.4, Harom-tolyl), 7.20
B. Org. Lett. 2004, 6, 4089–4092.
(m, 5H, Harom-Phe), 7.08 (d, 2H, Jortho = 8.6, Harom-Tyr),
6.79 (d, 2H, Jortho = 8.4, Harom-tolyl), 5.89 (C of ABCXY,
1H, H-20), 5.70 (d, 1H, J5,4 = 10.2, H-5), 5.61 (dd, 1H,
J4,5 = 10.2, J4,3 = 4.4, H-4), 5.28 (A of ABCXY, 1H,
13. Goll, D. E.; Thompson, V. F.; Li, H.; Wei, W.; Cong, J.
Physiol. Rev. 2003, 83, 731–801, and literature cited in Ref.
12b.
14. Computational modeling (MMFF94 force field) on the
N,N0-bis-formyl derivative of D yields a structure that
mimics the b-turn of HC(O)-Gly-Gly-NHCH3.
15. (a) Dooley, C. T.; Houghton, R. A. Biopolym. (Pept. Sci.)
1999, 51, 379–390; (b) Alves, I.; Cowell, S.; Lee, Y. S.;
Tang, X.; Davis, P.; Porreca, F.; Hruby, V. J. Biochem.
Biophys. Res. Commun. 2004, 318, 335–340; (c) Eguchi, M.
Med. Res. Rev. 2004, 24, 182–212.
J4 ,2 = 17.2, H-40), 5.16 (B of ABCXY, 1H, J3 ,2 = 10.2,
0
0
0
0
H-30), 4.56 (m, 1H, H-9), 4.50 (s, 1H, H-2), 4.39 (m, 1H,
0
0
0
0
H-12), 4.13 (X of ABCXY, 1H, J1 a,1 b = 13.3, J1 a,2 = 5.9,
H-10a), 4.00 (m, 2H, H-3, H-10b), 3.96 (m, 1H, H-200), 3.90
(m, 1H, H-6), 3.18 (m, 1H, H-7a), 3.98 (m, 2H, H-7b, H-
10a), 2.80 (m, 2H, H-1000b, H-300a), 2.62 (m, 1H, H-300b),
2.41 (s, 3H, CH3-tolyl), 2.39 (m, 2H, H-14), 2.33 (s, 3H,
CH3-tolyl), 2.03 (s, 3H, COCH3), 1.91 (m, 2H, H-13); 13C
NMR (75 MHz, 40 °C, DMSO-d6) d 170.4 (s, 2C, CO),
169.4 (s, CO), 147.6 (s, Carom), 145.4 (m, 2C, C–F),
145.6 (s, Carom), 142.2 (s, Carom), 141.9 (m, 2C, C–F), 139.0
16. Lloyd-Williams, P.; Albericio, F.; Giralt, E. Chemical
Approaches to the Synthesis of Peptides and Proteins; CRC:
Boca Raton, 1997.