H. Sun et al. / Bioorg. Med. Chem. Lett. 15 (2005) 793–797
797
-
O
Cl
+
a
4
b
N
H
N
N
3
BocHN
N
H
NHBn
NHBn
O
R
1
O
O
O
12a-d
11
Scheme 2. Synthesis of peptido-mimetics with modifications at Ala residue. Reagents and conditions: (a) i. 2N LiOH, 1,4-dioxane, then 1N HCl, ii.
benzylamine, EDC, HOBt, N,N-diisopropylethylamine, CH2Cl2, 88% over two steps; (b) i. 4N HCl in 1,4-dioxane, MeOH, ii. L-N-Boc-amino acid,
EDC, HOBt, N,N-diisopropylethylamine, CH2Cl2, iii. 4N HCI in 1,4-dioxane, MeOH, structures are shown in Table 1, the yield over three steps is
68–74%.
9. Srinivasula, S. M.; Hegde, R.; Saleh, A.; Datta, P.;
Shiozaki, E.; Chai, J.; Lee, R. A.; Robbins, P. D.;
Fernandes-Alnemri, T.; Shi, Y.; Alnemri, E. S. Nature
2001, 410, 112–116.
10. Shiozaki, E. N.; Chai, J.; Rigotti, D. J.; Riedl, S. J.; Li, P.;
Srinivasula, S. M.; Alnemri, E. S.; Fairman, R.; Shi, Y.
Mol. Cell 2003, 11, 519–527.
11. Du, C.; Fang, M.; Li, Y.; Li, L.; Wang, X. Cell 2000, 102,
33–42.
12. Verhagen, A. M.; Ekert, P. G.; Pakusch, M.; Silke, J.;
Connolly, L. M.; Reid, G. E.; Moritz, R. L.; Simpson, R.
J.; Vaux, D. L. Cell 2000, 102, 43–53.
13. Wu, G.; Chai, J.; Suber, T. L.; Wu, J. W.; Du, C.; Wang,
X.; Shi, Y. Nature 2000, 408, 1008–1012.
14. Liu, Z.; Sun, C.; Olejniczak, E. T.; Meadows, R.; Betz, S.
F.; Oost, T.; Herrmann, J.; Wu, J. C.; Fesik, S. W. Nature
2000, 408, 1004–1008.
15. Kipp, R. A.; Case, M. A.; Wist, A. D.; Cresson, C. M.;
Carrell, M.; Griner, E.; Wiita, A.; Albiniak, P. A.; Chai,
J.; Shi, Y.; Semmelhack, M. F.; McLendon, G. L.
Biochemistry 2002, 41, 7344–7349.
16. Fulda, S.; Wick, W.; Weller, M.; Debatin, K.-M. Nature
Med. 2002, 8, 808–815.
In summary, our structure-based design, synthesis and
biochemical testing have yielded highly potent Smac
peptido-mimetics. Compounds 6i and 6j have Ki values
of 28 and 24nM, respectively, for their binding affinities
to the XIAP BIR3 protein, and are at least 20 times
more potent than the natural Smac AVPI peptide. Fur-
thermore, these compounds have reduced peptidic prop-
erties as compared to the natural Smac peptide.
Preliminary evaluations of compound 6j in human
breast cancer MDA-MB-231 cells and prostate PC-3
cancer cells with high levels of XIAP proteins show that
6j is effective in enhancing apoptosis induced by chemo-
therapeutic agents. Additional structural optimization
of these Smac peptido-mimetics and extensive biological
testing are underway and will be reported in due course.
It is predicted that highly potent and cell-permeable
Smac mimetics with in vivo stability may have the thera-
peutic potential to be developed as an entirely new class
of anticancer drugs for the treatment of human cancers
by overcoming apoptosis-resistance of cancer cells to
current therapeutic agents.
17. Arnt, C. R.; Chiorean, M. V.; Heldebrant, M. P.; Gores,
G. J.; Kaufmann, S. H. J. Biol. Chem. 2002, 277, 44236–
44243.
Acknowledgements
18. Yang, L.; Mashima, T.; Sato, S.; Mochizuki, M.; Saka-
moto, H.; Yamori, T.; Oh-Hara, T.; Tsuruo, T. Cancer
Res. 2003, 63, 831–837.
19. Nikolovska-Coleska, Z.; Wang, R.; Fang, X.; Pan, H.;
Tomita, Y.; Li, P.; Roller, P. P.; Krajewski, K.; Saito, N.
G.; Stuckey, J. A.; Wang, S. Anal. Biochem. 2004, 332,
261–273.
We are grateful for the financial support from the Pros-
tate Cancer Research Foundation and from the
National Institutes of Health (1R01CA109025 to S.W.).
References and notes
20. Sun, C.; Cai, M.; Meadows, R. P.; Xu, N.; Gunasekera, A.
H.; Herrmann, J.; Wu, J. C.; Fesik, S. W. J. Biol. Chem.
2000, 275, 33777–33781.
1. Kerr, J. F.; Wyllie, A. H.; Currie, A. R. Br. J. Cancer
1972, 26, 239–257.
21. Oost, T. K.; Sun, C.; Armstrong, R. C.; Al-Assaad, A. S.;
Betz, S. F.; Deckwerth, T. L.; Ding, H.; Elmore, S. W.;
Meadows, R. P.; Olejniczak, E. T.; Oleksijew, A.; Olters-
dorf, T.; Rosenberg, S. H.; Shoemaker, A. R.; Tomaselli,
K. J.; Zou, H.; Fesik, S. W. J. Med. Chem. 2004, 47, 4417–
4426.
22. Sun, H.; Nikolovska-Coleska, Z.; Yang, C. Y.; Xu, L.;
Tomita, Y.; Krajewski, K.; Roller, P. P.; Wang, S. J. Med.
Chem. 2004, 47, 4147–4150.
2. Thompson, C. B. Science 1995, 267, 1456–1462.
3. Nicholson, D. W. Nature 2000, 407, 810–816.
4. Reed, J. C. Nat. Rev. Drug Discovery 2002, 1, 111–121.
5. Deveraux, Q. L.; Reed, J. C. Genes Dev. 1999, 1, 239–
252.
6. Salvesen, G. S.; Duckett, C. S. Nat. Rev. Mol. Cell Biol.
2002, 3, 401–410.
7. Huang, Y.; Park, Y. C.; Rich, R. L.; Segal, D.; Myszka,
D. G.; Wu, H. Cell 2001, 104, 781–790.
23. Sybyl, a molecular modeling system, is supplied by Tripos,
Inc., St. Louis, MO 63144.
8. Ekert, P. G.; Silke, J.; Hawkins, C. J.; Verhagen, A. M.;
Vaux, D. L. J. Cell Biol. 2001, 152, 483–490.