Please do not adjust margins
Catalysis Science & Technology
Page 10 of 12
ARTICLE
Journal Name
11 (a) S. M. M. Knapp, T. J. Sherbow, R. B. Yelle, J. J. Juliette and 21 D. Yakhvarov, E. Trofimova, O. Sinyashin, O. Kataeva, Y.
D. R. Tyler, Organometallics, 2013, 32, 3744; (b) E. Tomás-
DOI: 10.1039/C5CY02142A
Mendivil, L. Menéndez-Rodríguez, J. Francos, P. Crochet and
Krupskaya, V. Kataev, R. Klingeler and B. Büchner, Inorg.
Chem., 2011, 50, 4553.
V. Cadierno, RSC Adv., 2014, 4, 63466; (c) E. Tomás-Mendivil,
F. J. Suárez, J. Díez and V. Cadierno, Chem. Commun., 2014, 22 For a discussion about the strength of hydrogen bonds, see:
50 9661; (d) E. Tomás-Mendivil, V. Cadierno, M. I. T. Steiner, Angew. Chem. Int. Ed., 2002, 41, 48.
Menéndez and R. López, Chem. Eur. J., 2015, 21, 16874; (e) 23 (a) Employing directly complex [RuCl2(η6-p-cymene){P(2-
,
Ruthenium complexes with pyrazolyl ligands have also
shown good efficiency and selectivity in the catalytic
hydration of nitriles at 80 °C: Í. Ferrer, J. Rich, X. Fontrodona,
M. Rodríguez and I. Romero, Dalton Trans., 2013, 42, 13461;
Í. Ferrer, X. Fontrodona, M. Rodríguez and I. Romero, Dalton
Trans., 2016, in press (DOI: 10.1039/C5DT04376J).
furyl)2OH}] (4f) as catalyst, under identical experimental
conditions, benzamide was formed in 13% after 2 h; (b)
Employing directly complex [RuCl2(η6-p-cymene){P(4-
C6H4F)2OH}] (4b) as catalyst, under identical experimental
conditions, benzamide was formed in 96% after 30 min.
24 Although different ruthenium complexes have shown some
activity in water at temperatures ≤ 40 ᵒC, they require of
extremely long reaction times (2-4 days) to generate the
amides in good yields. See, references 11a,c and: (a) S. M. M.
Knapp, T. J. Sherbow, J. J. Juliette and D. R. Tyler,
Organometallics, 2012, 31, 2941; (b) S. M. M. Knapp, T. J.
Sherbow, R. B. Yelle, L. N. Zakharov, J. J. Juliette and D. R.
Tyler, Organometallics, 2013, 32, 824; (c) R. García-Álvarez,
M. Zablocka, P. Crochet, C. Duhayon, J.-P. Majoral and V.
Cadierno, Green Chem., 2013, 15, 2447.
12 T. J. Ahmed, B. R. Fox, S. M. M. Knapp, R. B. Yelle, J. J. Juliette
and D. R. Tyler, Inorg. Chem., 2009, 48, 7828.
13 For selected reviews covering the coordination chemistry of
secondary phosphine oxides, see: (a) D. M. Roundhill, R. F.
Sperline and W. B. Beaulieu, Coord. Chem. Rev., 1978, 26
263; (b) B. Walther, Coord. Chem. Rev., 1984, 60, 67; (c) T.
Appleby and J. D. Woollins, Coord. Chem. Rev., 2002, 235
,
,
121; (d) L. Ackermann, Synthesis, 2006, 1557; (e) T. M.
Shaikh, C.-M. Weng and F. E. Hong, Coord. Chem. Rev., 2012,
256, 771.
25 Very recently, an efficient copper-based catalytic system
able to hydrate nitriles in water at 35 ᵒC has been
communicated: P. Marcé, J. Lynch, A. J. Blacker and J. M. J.
Williams, Chem. Commun., 2016, 52, 1436.
14 Concerning the preparation of the secondary phosphine
oxides, several methods have been described in the
literature. However, the one used more frequently is the
addition of Grignard, or related organometallic reagents, to 26 The rhodium-based systems [{Rh(μ-OMe)(cod)}2]/PCy3 (cod =
H-phosphonates. See, for example: (a) T. L. Emmick and R. L.
Letsinger, J. Am. Chem. Soc., 1968, 90, 3459; (b) H. R. Hays, J.
Org. Chem., 1968, 33, 3690; (c) A. Leyris, J. Bigeault, D. Nuel,
L. Giordano and G. Buono, Tetrahedron Lett., 2007, 48, 5247;
1,5-cyclooctadiene) and [RhBr(PIN)(cod)] (PIN = 1-isopropyl-
3-(5,7-dimethyl-1,8-naphthyrid-2-yl)imidazol-2-ylidene) are
known to hydrate nitriles under ambient conditions.
However, they operate in organic media with only small
amounts of water, and the latter requires the help of a base:
(a) A. Goto, K. Endo and S. Saito, Angew. Chem. Int. Ed.,
2008, 47, 3607; (b) P. Daw, A. Sinha, S. M. W. Rahaman, S.
Dinda and J. K. Bera, Organometallics, 2012, 31, 3790.
(d) Q. Xu, C.-Q. Zhao, L.-B. Han, J. Am. Chem. Soc., 2008, 130
,
12648; (e) T. Achard, L. Giordano, A. Tenaglia, Y. Gimbert and
G. Buono, Organometallics, 2010, 29, 3936.
15 For studies and discussions of the factors affecting this
equilibrium, see: (a) J. Chatt and B. T. Heaton, J. Chem. Soc. 27 (a) J. Cossy and C. Leblanc, Tetrahedron Lett., 1989, 30, 4531;
A, 1968, 2745; (b) H. J. Brass, R. A. Di Prete, J. O. Edwards, R.
G. Lawler, R. Curci and G. Modena, Tetrahedron, 1970, 26
4555; (c) B. Hoge, S. Neufeind, S. Hettel, W. Wiebe and C.
Thösen, J. Organomet. Chem., 2005, 690, 2382; (d) B. Hoge,
(b) J. Cossy, D. Belotti, N. K. Cuong and C. Chassagnard,
Tetrahedron, 1993, 49, 7691; (c) C.-Y. Zhou and C.-M. Che, J.
Am. Chem. Soc., 2007, 129, 5828; (d) Z.-X. Xu, Y.-X. Tan, H.-R.
Fu, J. Liu and J. Zhang, Inorg. Chem., 2014, 53, 12199.
,
P. Garcia, H. Willner and H. Oberhammer, Chem. Eur. J., 28 R. R. Amaresh and P. T. Perumal, Tetrahedron, 1999, 55
2006, 12, 3567; (e) A. Christiansen, C. Li, M. Garland, D. 8083.
Selent, R. Ludwig, A. Spannenberg, W. Baumann, R. Franke 29 Y.-M. Huang, C.-W. Zheng and G. Zhao, J. Org. Chem., 2015,
and A. Börner, Eur. J. Org. Chem., 2010, 2733. 80, 3798.
16 See reference 15a and: (a) C. S. Kraihanzel and C. M. Bartish, 30 X. Feng, J.-J. Wang, Z. Xun, J.-J. Zhang, Z.-B. Huang and D.-Q.
J. Am. Chem. Soc., 1972, 94, 3572; (b) D. E. Berry, K. A. Shi, Chem. Commun., 2015, 51, 1528.
Beveridge, G. W. Bushnell and K. R. Dixon, Can. J. Chem., 31 (a) L. Xia and Y. R. Lee, Org. Biomol. Chem., 2013, 11, 5254;
,
1985, 63, 2949; (c) D. E. Berry, K. A. Beveridge, G. W.
Bushnell, K. R. Dixon and A. Pidcock, Can. J. Chem., 1986, 64
343; (d) K. Diemert, A. Hinz and D. Lorenzen, J. Organomet.
(b) L. Xia, A. Idhayadhulla, Y. R. Lee, S. H. Kim and Y.-J. Wee,
ACS Comb. Sci., 2014, 16, 333; (c) N. Basavegowda, K. Mishra
,
and Y. R. Lee, RSC Adv., 2014, 4, 61666.
Chem., 1990, 393, 379; (e) M. Alonso, M. A. Alvarez, M. E. 32 X. Feng, J.-J. Wang, J.-J. Zhang, C.-P. Cao, Z.-B. Huang and D.-
García, D. García-Vivó and M. A. Ruiz, Inorg. Chem., 2010, 49
,
Q. Shi, Green Chem., 2015, 17, 973.
33 G. Tenti, M. T. Ramos and J. C. Menéndez, ACS Comb. Sci.,
2012, 14, 551.
8962.
17 Please note that the hydrolysis of free chlorophosphines
represents an alternative method to synthesize secondary 34 (a) De Shong, N. E. Lowmaster and O. Baralt, J. Org. Chem.,
phosphine oxides. See, for example, references 15a and 15e.
18 The synthesis of complex 2a was previously described in a
couple of articles, and its structure confirmed by X-ray
1983, 48, 1149; (b) T. Iida, K. Hori, K. Nomura and E. Yoshii,
Heterocycles, 1994, 38, 1839; (c) X. Bi, J. Zhang, Q. Liu, J. Tan
and B. Li, Adv. Synth. Catal., 2007, 349, 2301.
diffraction in one of them. However, in none of them 13C{1H} 35 (a) R. Hilgenkamp and C. K. Zercher, Tetrahedron, 2001, 57
,
NMR data were given: (a) R. Regragui, P. H. Dixneuf, N. J.
Taylor and A. J. Carty, Organometallics, 1984, , 1020; (b) A.
8793; (b) W. Lin, C. R. Theberge, T. J. Henderson, C. K.
3
Zercher, J. Jasinski and R. J. Butcher, J. Org. Chem., 2009, 74,
K. Pandiakumar and A. G. Samuelson, J. Chem. Sci., 2015,
127, 1329.
645.
36 See, for example: (a) H.-L. Huang, L. T. Liu, S.-F. Chen and H.
19 O. Kühl, Phosphorus-31 NMR Spectroscopy:
A
Concise
Ku, Tetrahedron: Asymmetry, 1998,
9, 1637; (b) P. Le Gendre,
Introduction for the Synthetic Organic and Organometallic
Chemist, Springer-Verlag, Berlin, 2008, pp. 83-87.
20 S. Gowrisankar, H. Neumann, A. Spannenberg and M. Beller,
Acta Cryst. 2014, E70, m255.
M. Offenbecher, C. Bruneau and P. H. Dixneuf, Tetrahedron:
Asymmetry, 1998, 9, 2279; (c) R. Touati, T. Gmiza, S. Jeulin,
C. Deport, V. Ratovelomanana-Vidal, B. B. Hassine and J.-P.
Genet, Synlett, 2005, 2478; (d) R. Kramer and R. Brückner,
10 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins