Beilstein J. Org. Chem. 2015, 11, 493–498.
7. Torres, A. G.; Fabani, M. M.; Vigorito, E.; Williams, D.; Al-Obaidi, N.;
Wojciechowski, F.; Hudson, R. H. E.; Seitz, O.; Gait, M. J.
8. Whitney, A.; Gavory, G.; Balasubramanian, S. Chem. Commun. 2003,
half-life of 15 when cleaved by the analogous DNA conjugate
Conclusion
We have shown that PNA conjugates of tris(2-aminobenzimida-
zole) are potent hydrolytic cleavers of RNA, exhibiting similar
efficiency and substrate specificity as the corresponding DNA
conjugates tested previously. Our optimized synthesis of tris(2-
aminobenzimidazole) provides a new way to obtain the catalyst
avoiding mercury salts with all their disadvantages (toxicity,
harsh reaction conditions, variable yields). Conjugation to PNA
oligomers can be readily achieved in high yields, providing an
easy way to synthesize sequence specific metal-free artificial
nucleases for a wide range of RNA substrates. Due to the ten-
dency of PNA conjugates to form aggregates, a phenomenon
not seen with their DNA analogs, optimization of the PNA
oligomer length is necessary, especially for strands rich in G/C
base pairs. Reduced activity of long PNA conjugates caused by
aggregation can be a minor disadvantage in comparison to DNA
conjugates. However, the higher affinity of PNA towards RNA
allows using shorter PNA oligomers. In addition, the stability of
PNA against biodegradation is another advantage especially
with respect to possible in cell applications.
9. Riguet, E.; Tripathi, S.; Chaubey, B.; Désiré, J.; Pandey, V. N.;
Décout, J.-L. J. Med. Chem. 2004, 47, 4806–4809.
10.Gaglione, M.; Milano, G.; Chambery, A.; Moggio, L.; Romanelli, A.;
Messere, A. Mol. BioSyst. 2011, 7, 2490–2499.
11.Murtola, M.; Strömberg, R. Org. Biomol. Chem. 2008, 6, 3837–3842.
12.Murtola, M.; Wenska, M.; Strömberg, R. J. Am. Chem. Soc. 2010, 132,
13.Petersen, L.; de Koning, M. C.; van Kuik-Romeijn, P.; Weterings, J.;
Pol, C. J.; Platenburg, G.; Overhand, M.; van der Marel, G. A.;
van Boom, J. H. Bioconjugate Chem. 2004, 15, 576–582.
14.Komiyama, M.; Inokawa, T.; Yoshinari, K.
J. Chem. Soc., Chem. Commun. 1995, 77–78.
15.Scheffer, U.; Strick, A.; Ludwig, V.; Peter, S.; Kalden, E.; Göbel, M. W.
16.Gnaccarini, C.; Peter, S.; Scheffer, U.; Vonhoff, S.; Klussmann, S.;
Göbel, M. W. J. Am. Chem. Soc. 2006, 128, 8063–8067.
17.Katritzky, A. R.; Rogovoy, B. V. ARKIVOC 2005, No. iv, 49–87.
18.Yong, Y. F.; Kowalski, J. A.; Lipton, M. A. J. Org. Chem. 1997, 62,
Supporting Information
19.Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Science
20.Müller, J. D.; Chen, Y.; Gratton, E. Methods Enzymol. 2003, 361,
Supporting Information File 1
Experimental procedures and characterization data.
21.Sahu, B.; Sacui, I.; Rapireddy, S.; Zanotti, K. J.; Bahal, R.;
Armitage, B. A.; Ly, D. H. J. Org. Chem. 2011, 76, 5614–5627.
Acknowledgements
Financial support by the European 7th framework program
(238679, PhosChemRec), the Swedish Research Council and by
the state of Hesse (LOEWE, SynChemBio) is gratefully
acknowledged.
License and Terms
This is an Open Access article under the terms of the
Creative Commons Attribution License
References
1. Lönnberg, H. Org. Biomol. Chem. 2011, 9, 1687–1703.
permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
2. Åström, H.; Williams, N. H.; Strömberg, R. Org. Biomol. Chem. 2003, 1,
3. Åström, H.; Strömberg, R. Org. Biomol. Chem. 2004, 2, 1901–1907.
The license is subject to the Beilstein Journal of Organic
Chemistry terms and conditions:
4. Nielsen, P. E.; Egholm, M. Curr. Issues Mol. Biol. 1999, 1, 89–104.
5. Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.;
Driver, D. A.; Berg, R. H.; Kim, S. K.; Norden, B.; Nielsen, P. E. Nature
The definitive version of this article is the electronic one
which can be found at:
6. Demidov, V. V.; Potaman, V. N.; Frank-Kamenetskii, M.; Egholm, M.;
Buchardt, O.; Sönnichsen, S. H.; Nielsen, P. E. Biochem. Pharmacol.
498