Page 7 of 15
Journal of the American Chemical Society
Chem., Int. Ed. 2009, 48, 6836–6839. (b) Coyle, E. E.; Doonan, B.
Unperturbed Si=O Double Bond. Angew. Chem., Int. Ed. 2019, 58,
9425–9428.
1
2
3
4
5
6
7
8
J.; Holohan, A. J.; Walsh, K. A.; Lavigne, F.; Krenske, E. H.; O'Brien,
C. J. Catalytic Wittig Reactions of Semi ‐ and Nonstabilized
Ylides Enabled by Ylide Tuning. Angew. Chem., Int. Ed. 2014, 53,
12907–12911. (c) Longwitz, L.; Werner, T. Recent advances in
catalytic Wittig-type reactions based on P(III)/P(V) redox cycling.
Pure Appl. Chem. 2018, 91, 95–102.
(7) Gau, D.; Kato, T.; Saffon-Merceron, N.; Cossío, F. P.;
Baceiredo, A. Stable Phosphonium Sila-ylide with Reactivity as a
Sila-Wittig Reagent. J. Am. Chem. Soc. 2009, 131, 8762–8763.
(8) Goldberg, D. E.; Harris, D. H.; Lappert, M. F.; Thomas, K. M. A
New Synthesis of Divalent Group 4B Alkyls M[CH(SiMe3)2]2 (M =
Ge or Sn), and the Crystal and Molecular Strcuture of the Tin
Compound. J. Chem. Soc., Chem. Commun. 1976, 261–262.
(9) Brook, A. G.; Abdesaken, F.; Gutekunst, B.; Gutekunst, G.;
Kallury, R. K. A solid silaethene: isolation and characterization.
Chem. Commun. 1981, 191–192.
(14) Lee, V. Y., Organosilicon Compounds: Theory and
Experiment (Synthesis); Academic Press: New York, 2017.
(15) Geometry optimizations and harmonic frequency
calculations were performed at the B97-D/def2-SVP level of
density functional theory. NMR chemical shift values were
calculated using the optimized geometries at the HCTH407/6-
311+G(d)//B97-D/def2-SVP level of theory. All calculations were
executed using Gaussian 09. For detailed information, see the
Supporting Information.
(16) Bartlett, M. (Triphenylphosphoranylidene)ketene: The
Bestmann Ylide. Synlett 2013, 24, 773–774.
(17) Xiong, Y.; Yao, S.; Müller, R.; Kaupp, M.; Driess, M. From
silicon(II)-based dioxygen activation to adducts of elusive
dioxasiliranes and sila-ureas stable at room temperature. Nat.
Chem. 2010, 2, 577–580.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) West, R.; Fink, M. J.; Michl, J. Tetramesityldisilene, a Stable
Compound Containing a Silicon-Silicon Double Bond. Science
1981, 214, 1343–1344.
(18) Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem.
1964, 68, 441–451.
(19) Swarnakar, A. K.; McDonald, S. M.; Deutsch, K. C.; Choi, P.;
Ferguson, M. J.; McDonald, R.; Rivard, E. Application of the
Donor–Acceptor Concept to Intercept Low Oxidation State
Group 14 Element Hydrides using a Wittig Reagent as a Lewis
Base. Inorg. Chem. 2014, 53, 8662–8671.
(20) Zborovsky, L.; Kostenko, A.; Bravo-Zhivotovskii, D.; Apeloig,
Y. Mechanism of the Thermal Z⇌E Isomerization of a Stable
Silene; Experiment and Theory. Angew. Chem., Int. Ed. 2019, 58,
14524-14528.
(11) Yoshifuji, M.; Shima, I.; Inamoto, N.; Hirotsu, K.; Higuchi, T.
Synthesis
and
structure
of
bis(2,4,6-tri-tert-
butylphenyl)diphosphene: isolation of a true phosphobenzene. J.
Am. Chem. Soc. 1981, 103, 4587–4589.
(12) For recent reviews on multiply bonded main group
compounds, see (a) Power, P. P. π-Bonding and the Lone Pair
Effect in Multiple Bonds between Heavier Main Group Elements.
Chem. Rev. 1999, 99, 3463–3504. (b) Ottosson, H. Silenes:
Connectors between classical alkenes and nonclassical heavy
alkenes. Coord. Chem. Rev. 2008, 252, 1287–1314. (c) Fischer, R.
C.; Power, P. P. π-Bonding and the Lone Pair Effect in Multiple
Bonds Involving Heavier Main Group Elements: Developments in
the New Millennium. Chem. Rev. 2010, 110, 3877–3923. (d)
Xiong, Y.; Yao, S.; Driess, M. Chemical Tricks To Stabilize Silanones
and Their Heavier Homologues with E=O Bonds (E=Si–Pb): From
Elusive Species to Isolable Building Blocks. Angew. Chem., Int. Ed.
2013, 52, 4302–4311. (e) Nesterov, V.; Reiter, D.; Bag, P.; Frisch,
P.; Holzner, R.; Porzelt, A.; Inoue, S. NHCs in Main Group
Chemistry. Chem. Rev. 2018, 118, 9678–9842.
(21) Xiong, Y.; Yao, S.; Driess, M. Synthesis and Rearrangement
of Stable NHC-Silylene Adducts and Their Unique Reactivity
towards Cyclohexylisocyanide. Chem. Asian J. 2010, 5, 322–327.
(13) For selected examples of isolable silanones, see (a) Xiong,
Y.; Yao, S.; Driess, M. An Isolable NHC-Supported Silanone. J. Am.
Chem. Soc. 2009, 131, 7562–7563. (b) Filippou, A. C.; Baars, B.;
Chernov, O.; Lebedev, Y. N.; Schnakenburg, G. Silicon–Oxygen
Double Bonds:
A Stable Silanone with a Trigonal-Planar
Coordinated Silicon Center. Angew. Chem., Int. Ed. 2014, 53, 565–
570. (c) Ishida, S.; Abe, T.; Hirakawa, F.; Kosai, T.; Sato, K.; Kira, M.;
Iwamoto, T. Persistent Dialkylsilanone Generated by
Dehydrobromination of Dialkylbromosilanol. Chem. Eur. - J.
2015, 21, 15100–15103. (d) Alvarado-Beltran, I.; Rosas-Sánchez,
A.; Baceiredo, A.; Saffon-Merceron, N.; Branchadell, V.; Kato, T. A
Fairly Stable Crystalline Silanone. Angew. Chem., Int. Ed. 2017, 56,
10481–10485. (e) Wendel, D.; Reiter, D.; Porzelt, A.; Altmann, P. J.;
Inoue, S.; Rieger, B. Silicon and Oxygen’s Bond of Affection: An
Acyclic Three-Coordinate Silanone and Its Transformation to an
Iminosiloxysilylene. J. Am. Chem. Soc. 2017, 139, 17193–17198.
(f) Rosas-Sánchez, A.; Alvarado-Beltran, I.; Baceiredo, A.; Saffon-
Merceron, N.; Massou, S.; Hashizume, D.; Branchadell, V.; Kato, T.
Cyclic (Amino)(Phosphonium-Bora-Ylide)Silanone: A Remarkably
Room Temperature Persistent Silanone. Angew. Chem., Int. Ed.
2017, 56, 15916–15920. (g) Kobayashi, R.; Ishida, S.; Iwamoto, T.
An Isolable Silicon Analogue of a Ketone that Contains an
ACS Paragon Plus Environment