3
chromatographic purification was simple even on a gram scale.
Formation of the seven-membered ring under Staudinger–aza-
Wittig reaction conditions (treatment of 7 with PMe3) smoothly
gave the bicyclic products 6. It should be noted that using PMe3
to promote the cyclization step was essential, since with PPh3
cyclization of the corresponding phosphazene intermediate did
not occur, presumably due to sterics. The final step of the
reaction sequence – reduction of 6 with NaBH4 – gave the
10. Schultz, T.; Turner, S. C.; Braje, W. M. Synthesis 2010, 1339–
1343.
11. Hussenether, T.; Troschuetz, R. J. Heterocycl. Chem. 2004, 41,
857–865.
12. Subota, A. I.; Grygorenko, O. O.; Valter, Y. B.; Tairov, M. A.;
Artamonov, O. S.; Volochnyuk, D. M.; Ryabukhin, S. V. Synlett
2015, 26, 408–411.
targeted
c]azepines 5, isolated as dihydrochlorides, in 64–67% yield.
5-substituted
6,7,8,9-tetrahydro-5H-pyrido[3,2-
In conclusion, a reaction sequence was developed for the
preparation of 5-substituted 6,7,8,9-tetrahydro-5H-pyrido[3,2-
c]azepines, proceeding over eight steps to give the title products
in 6.2–10.6% overall yield on a gram scale (up to 10 g). The
method relied on cyclization of the corresponding azidoketones 7
under mild Staudinger–aza-Wittig reaction conditions as the key
step. The approach was limited to the preparation of 6,7,8,9-
tetrahydro-5H-pyrido[3,2-c]azepines containing
a
relatively
hindered substituent at the C-5 position (i. e. aryl or i-Pr). In
other cases, formation of 5,7,8,9-tetrahydrooxepino[4,3-
b]pyridines 17 did not allow the preparation of target products.
Acknowledgments
The work was supported by Ukrainian Government Funding
(state registry No. 0114U003956) and Life Chemicals Group.
References and notes
1. (a) Nadin, A.; Hattotuwagama, C.; Churcher, I. Angew. Chem. Int.
Ed. 2012, 51, 1114 – 1122. (b) Lovering, F.; Bikker, J.; Humblet,
C. J. Med. Chem. 2009, 52, 6752–6756. (c) Nicholls, A.;
McGaughey, G. B.; Sheridan, R. P.; Good, A. C.; Warren, G. ;
Mathieu, M.; Muchmore, S. W.; Brown, S. P.; Grant, J. A.; Haigh,
J. A.; Nevins, N.; Jain, A. N.; Kelley, B. J. Med. Chem. 2010, 53,
3862–3886. (d) Kingwell, K. Nature Rev. Drug Discov. 2009, 8,
931. (e) Lovering, F. Med. Chem. Commun. 2013, 4, 515–519.
2. For recent examples of the fused azepines synthesis, see: (a)
Peshkov, A. A.; Peshkov, V. A.; Pereshivko, O. P.; Van Hecke,
K.; Kumar, R.; V. Van Der Eycken, E. J. Org. Chem. 2015, 80,
6598–6608. (b) Lei, T.; Zhang, H.; Yang, Y.-R. Tetrahedron Lett.
2015, 56, 5933–5936. (c) Quick, M. P.; Fröhlich, R.; Schepmann,
D.; Wünsch, B. Org. Biomol. Chem. 2015, 13, 7265–7281. (d)
Chen, M.; Chen, Y.; Sun, N.; Zhao, J.; Liu, Y.; Li, Y. Angew.
Chem. Int. Ed. 2015, 54, 1200–1204. (e) Zhang, Y.; Zheng, L.;
Yang, F.; Zhang, Z.; Dang, Q.; Bai, X. Tetrahedron 2015, 71,
1930–1939.
3. Taylor, R. D.; MacCoss, M.; Lawson, A. D. J. Med. Chem. 2014,
57, 5845–5859.
4. Gahman, T. C.; Zhao, C.; Lang, H.; Massari, M. E. U. S. Pat.
2009/0062253, 2009.
5. Cale, A. D.; Gero, T. W.; Walker, K. R.; Lo, Y. S.; Welstead, W.
J.; Jaques, L. W.; Johnson, A. F.; Leonard, C. A.; Nolan, J. C.;
Johnson, D. N. J. Med. Chem. 1989, 32, 2178–2199.
6. Matsumoto, T.; Nagamiya, H.; Maezaki, H.; Kusumoto, T.;
Yoshikawa, K.; Furukawa, H.; Kamo, I. PCT Int. Pat.
WO 2009/063992, 2009.
7.
(a) Zhukauskaite, L. N.; Stankevichyus, A. P.; Kost, A. N. Chem.
Heterocycl. Comp. 1987, 14, 49–54. (b) Klar, H. Arch. Pharm.
1976, 309, 550–557. (c) Vitry, C.; Bedat, J.; Prigent, Y.; Levacher,
V.; Dupas, G.; Salliot, I.; Queguiner, G.; Bourguignon, J.
Tetrahedron 2001, 57, 9101–9108. (d) Marques, C. S.; Peixoto,
D.; Burke, A. J. RSC Adv. 2015, 5, 20108–20114.
8. Vanlaer, S.; De Borggraeve, W. M.; Compernolle, F. Eur. J. Org.
Chem. 2007, 4995–4998. (b) Vanlaer, S.; De Borggraeve, W. M.;
Voet, A.; Gielens, C.; De Maeyer, M.; Compernolle, F. Eur. J.
Org. Chem. 2007, 2571–2581.
9. Frick, J. J.; Ly, C. Q.; Schwarz, J. B. Synthesis 2015, 47, 2593–
2598.