R-hydroxyalkylation method7 using N,O-diprotected 2-
pyrrolidinyl sulfides 5 as the synthetic equivalents of the
chiral nonracemic 3-pyrrolidinol 2-carbanion synthons A.
Inspired by the SmI2-mediated14 C-glycosylation chemistry
developed by Beau15 and Skrydstrup,16 the sulfones 4 and
sulfides 5 were designed as the synthetic equivalents of A
(P ) TBDMS, Bn) (Figure 1).
Scheme 1. Retrosynthetic Analysis of 2-Hydroxyalkyl
3-Pyrrolidinols 1a and Their Higher Homologues 1b
3-pyrrolidinol 2-carbanion synthon A (Scheme 1). However,
this remains a challenging problem in carbanion chemistry
despite much effort having been paid, and a number of
umpoled methods having been developed, for the generation
of N-R-carbanions in general,5 in particular 2-lithio-
pyrrolidines or 2-lithiopiperidines.6,7 Past attempts at generat-
ing the R-carbanion synthons A, B, or C suffered from
â-elimination (for A, P ) Me),8 or wrong regioselectivity
(for B),9 or quick proton exchange (for C).10 Only in a
specific case, where a coordinating group (methoxycarbonyl)
was present in the C-2 position, was the 3-hydroxylate
2-lithiopyrrolidine generated.11 Alternatively, both achiral12
and chiral nonracemic13 synthetic equivalents of A have been
reported. In continuation of our interests in developing
substituted 2-lithiopyrrolidine-based synthetic methodologies
for alkaloid synthesis,10,13 we wish to report herein our results
on the development of a samarium diiodide (SmI2) mediated
Figure 1. Synthetic equivalents of synthons A.
We first selected sulfone 4a (P ) TBDMS) as a precursor
of synthon A. However, the failure to prepare 4a17 led us to
give up sulfones 4 (P ) TBDMS, Bn) and turn to sulfides
5 (P ) TBDMS, Bn) as the synthetic equivalents of A. The
synthesis of 5a is depicted in Scheme 2. Known (S)-3-
Scheme 2. Synthesis of N,O-Diprotected 2-Pyrrolidinyl
Sulfide 5a
(5) For reviews involving the generation and application of R-lithioam-
ines, see: (a) Cohen, T.; Bhupathy, M. Acc. Chem. Res. 1989, 22, 152. (b)
Gant, T. G.; Meyers, A. I. Tetrahedron 1994, 50, 2297. (c) Beak, P.; Basu,
A.; Gallagher, D. J.; Park, Y. S.; Thayumanavan, S. Acc. Chem. Res. 1996,
29, 552. (d) Yus, M. Chem. Soc. ReV. 1996, 25, 155. (e) Cohen, T. Pure
Appl. Chem. 1996, 68, 913. (f) Gawley, R. E. Curr. Org. Chem. 1997, 1,
71. (g) Kessar, S. V.; Singh, P. Chem. ReV. 1997, 97, 721. (h) Katritzky,
A.; Qi, M. Tetrahedron 1998, 54, 2647. (i) Husson, H. P.; Royer, J. Chem.
Soc. ReV. 1999, 28, 383. (j) Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi,
G. Chem. Soc. ReV. 2000, 29, 109.
(6) For representative approaches to optically active R-lithiopyrrolidines
and R-lithiopiperidines, see: (a) Meyers, A. I.; Dickman, D. A.; Bailey, T.
R. J. Am. Chem. Soc. 1985, 107, 7974. (b) Huang, P.-Q.; Arseniyadis, S.;
Husson, H.-P. Tetrahedron Lett. 1987, 28, 547. (c) Gawley, R. E.; Hart, G.
C.; Bartolotti, L. J. J. Org. Chem. 1989, 54, 175. (d) Pearson, W. H.;
Lindbeck, A. C.; Kampf, J. W. J. Am. Chem. Soc. 1993, 115, 2622. (e)
Wu, S.; Lee, S.; Beak, P. J. Am. Chem. Soc. 1996, 118, 715. (f) Coldham,
I.; Hufton, R.; Snowden, D. J. Am. Chem. Soc. 1996, 118, 5322. (g) Wiberg,
K. B.; Bailey, W. F. Angew. Chem., Int. Ed. 2000, 39, 2127. (h) Dearden,
M. J.; Firkin, C. R.; Hermet, J.-P. R.; O’Brien, P. J. Am. Chem. Soc. 2002,
124, 11870. (i) Watson, R. T.; Gore, V. K.; Chandupatla, K. R.; Dieter, R.
K.; Snyder, J. P. J. Org. Chem. 2004, 69, 6105.
(7) For samarium diiodide mediated generation of pyrrolidine and
piperidine R-carbanions, see: (a) Collin, J.; Namy, J. L.; Kagan, H. B.
Tetrahedron Lett. 1992, 33, 2973. (b) Murakami, M.; Hayashi, M.; Ito, Y.
J. Org. Chem. 1992, 57, 794. (c) Booth, S. E.; Benneche, T.; Undheim, K.
Tetrahedron 1995, 51, 3665.
hydroxy-2-pyrrolidinone18 (6) was silylated (TBDMSCl,
imidazole, DMAP, CH2Cl2, room temperature, 24 h) to give
(S)-7 in 95% yield. Treatment of (S)-7 with di-tert-butyl
dicarbonate in the presence of both triethylamine and a
(8) Beak, P.; Lee, W. K. J. Org. Chem. 1993, 58, 1109.
(9) (a) Sunose, M.; Peakman, T. M.; Charmant, J. P. H.; Gallagher, T.;
Macdonald, S. J. F. Chem. Commun. 1998, 1723. (b) Pandey, G.;
Chakrabarti, D. Tetrahedron Lett. 1998, 39, 8371 and references therein.
(10) Huang, P.-Q.; Zheng, X.; Wang, S.-L.; Ye, J.-L.; Jin, L.-R.; Chen,
Z. Tetrahedron: Asymmetry 1999, 10, 3309.
(14) For an excellent review, see: Kagan, H. B. Tetrahedron 2003, 59,
10351.
(11) (a) Williams, R. M.; Cao, J. Tetrahedron Lett. 1996, 37, 5441. (b)
Williams, R. M.; Cao, J.; Tsujishima, H. Angew. Chem., Int. Ed. 2000, 39,
2540.
(12) (a) Gallagher, T.; Giles, M.; Subramanian, R. S.; Hadley, M. S. J.
Chem. Soc., Chem. Commun. 1992, 166. (b) S. H. J.; Subramanian, R. S.;
Roberts, J. K.; Hadley, M. S. J. Chem. Soc., Chem. Commun. 1994, 933.
(13) (a) Huang, P.-Q.; Wu, T.-J.; Ruan, Y.-P. Org. Lett. 2003, 5, 4341.
(b) Huang, P.-Q.; Deng, J. Synlett 2004, 247. (c) Tang, T.; Ruan, Y.-P.;
Ye; J.-L.; Huang, P.-Q. Synlett 2005, 231.
(15) (a) Miquel, N.; Doisneau, G.; Beau, J. M. Angew. Chem., Int. Ed.
2000, 39, 4111. (b) Skrydstrup, T.; Jarreton, O.; Mazeas, D.; Urban, D.;
Beau, J. M. Chem. Eur. J. 1998, 4, 655. (c) Urban, D.; Skrydstrup, T.;
Beau, J. M. J. Org. Chem. 1998, 63, 2507.
(16) Mikkelsen, L. M.; Krintel, S. L.; Jimenez-Barbero, J.; Skrydstrup,
T. Chem. Commun. 2000, 2319.
(17) Attempts to oxidize 5a to sulfone 4a with either m-CPBA or oxone
failed. Instead, the hydrolyzed product was always obtained.
(18) Huang, P.-Q.; Zheng, X.; Wei, H. Heterocycles 2003, 60, 1833.
554
Org. Lett., Vol. 7, No. 4, 2005