A R T I C L E S
Scheffer et al.
Chart 1. Structures of Compounds 1-10
the solvent change from DMF to water. In addition, water itself
is a good electrophile due to its high polarity making it difficult
to surpass aqueous transition state solvation by guanidinium
groups. Finally, the protonation equilibrium of guanidines in
water is shifted toward the cation. Both compounds 1b and 2b,
as a result, are not sufficiently acidic to participate in proton
transfer steps. The remaining activity of 1b and 2b as pure
electrophilic catalysts is too weak to generate important rate
effects. We will show below that shifting the pKa of the cationic
groups toward 7 leads to promising synthetic RNA cleavers.
Increasing the number of charged groups gives a further boost
to catalytic power.
Results and Discussion
Synthesis of Catalysts. Derivatives of 2-aminopyridine were
obtained by heating the diamine 11 with 2-bromopyridine 12.
Subsequent reaction with di-tert-butyl dicarbonate led to a
mixture of bis-2-aminopyridine 4 (12%) and compound 13
(52%) that was transformed into product 3a by reagent 143b
(95%). 2-Aminobenzimidazoles are accessible by reaction of
the corresponding amines with thiocarbonyl diimidazole fol-
lowed by a second substitution with 1,2-phenylene diamine.7
A thiourea is formed in this step. It undergoes smooth cyclization
in the presence of HgO.7,8 Thus, benzylamine 15 could be
transformed into picrate 5a in 49% total yield. Analogous
procedures were used to prepare the catalyst picrates 6a and 8a
as depicted in Scheme 3. In the case of compound 7, the
benzimidazole moiety could be attached by heating the amine
precursor in the presence of 2-chlorobenzimidazole. However,
this procedure required high reaction temperatures and led to
products with insufficient yield and purity (20% after HPLC
separation).
Tris(2-aminoethyl)amine 21 (TREN) has been often used as
a building block in coordination chemistry. It also forms the
framework of several anion receptors based on guanidines and
ureas.9 For the synthesis of compound 9a (Scheme 4), TREN
Scheme 2
(6) For a Zn2+-bis(guanidinium) catalyst cleaving ApA, see: (a) Ait-Haddou,
H.; Sumaoka, J.; Wiskur, S. L.; Folmer-Andersen, F. J.; Anslyn, E. V.
Angew. Chem., Int. Ed. 2002, 41, 4014. RNA cleavers based on amines:
(b) Yoshinari, K.; Yamazaki, K.; Komiyama, M. J. Am. Chem. Soc. 1991,
113, 5899. (c) Komiyama, M.; Yoshinari, K. J. Org. Chem. 1997, 62, 2155.
(d) Verheijen, J. C.; Deiman, B. A. L. M.; Yeheskiely, E.; van der Marel,
G. A.; van Boom, J. H. Angew. Chem., Int. Ed. 2000, 39, 369. (e) Petersen,
L.; de Koning, M. C.; van Kuik-Romeijn, P.; Weterings, J.; Pol, C. J.;
Platenburg, C.; Overhand, M.; van der Marel, G. A.; van Boom, J. H.
Bioconjugate Chem. 2004, 15, 576. (f) Michaelis, K.; Kalesse M. Angew.
Chem., Int. Ed. 1999, 38, 2243. (g) Michaelis, K.; Kalesse M. ChemBio-
Chem. 2001, 1, 79. (h) Scarso, A.; Scheffer, U.; Go¨bel, M.; Broxterman,
Q. B.; Kaptein, B.; Formaggio, F.; Toniolo, C.; Scrimin, P. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 5144. For imidazole based RNA cleavers see:
(i) Beloglazova, N. G.; Fabani, M. M.; Zenkova, M. A.; Bichenkova, E.
V.; Polushin, N. N.; Silnikov, V. V.; Douglas, K. T.; Vlassov, V. V. Nucleic
Acids Res. 2004, 32, 3887. (j) Fouace, S.; Gaudin, C.; Picard, S.; Corvaisier,
S.; Renault, J.; Carboni, B.; Felden, B. Nucleic Acids Res. 2004, 32, 151.
For RNA cleaving peptides, see: (k) Mironova, N. L.; Pyshnyi, D. V.;
Ivanova, E. M. In Artificial Nucleases; Zenkova, M. A., Ed.; Springer:
Berlin, 2004; p 151.
of compound 2b over 1b disappears when applied to RNA
hydrolysis (Scheme 2). For an explanation, several factors have
to be considered. First of all, ion pair stability is reduced by
(5) (a) Jubian, V.; Dixon, R. P.; Hamilton, A. D. J. Am. Chem. Soc. 1992,
114, 1120. (b) Jubian, V.; Veronese, A.; Dixon, R. P.; Hamilton, A. D.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1237. (c) Smith, J.; Ariga, K.;
Anslyn, E. V. J. Am. Chem. Soc. 1993, 115, 362. (d) Perreault, D. M.;
Cabell, L. A.; Anslyn, E. V. Bioorg. Med. Chem. 1997, 5, 1209. (e) Kato,
T.; Takeuchi, T.; Karube, I. J. Chem. Soc., Chem. Commun. 1996, 953. (f)
Oost, T.; Filippazzi, A.; Kalesse, M. Liebigs Ann. Recl. 1997, 1005. (g)
Oost, T.; Kalesse M. Tetrahedron 1997, 53, 8421. (h) Zepik, H. H.; Benner
S. A. J. Org. Chem. 1999, 64, 8080. Selected recent papers on guanidinium
carboxylate recognition: (i) Schmuck, C.; Geiger, L. J. Am. Chem. Soc.
2004, 126, 8898. (j) Linton, B.; Hamilton, A. D. Tetrahedron 1999, 6027.
(k) Linton, B. R.; Goodman, M. S.; Fan, F.; van Arman, S. A.; Hamilton,
A. D. J. Org. Chem. 2001, 66, 7313. (l) Zafar, A.; Melendez, R.; Geib, S.
J.; Hamilton, A. D. Tetrahedron 2002, 58, 683. Crystal structure of the
sulfate salt of bis(guanidinium) compound 1: (m) Hutchings, M. G.;
Grossel, M. C.; Merckel, D. A. S.; Chippendale, A. M.; Kenworthy, M.;
McGeorge, G. Cryst. Growth Des. 2001, 1, 339. Crystal structure of
2-aminobenzimidazolium nitrate: (n) Bats, J. W.; Go¨rdes, D.; Schmalz,
H.-G. Acta Crystallogr. 1999, C55, 1325.
(7) Perkins, J. J.; Zartman, A. E.; Meissner, R. S. Tetrahedron Lett. 1999, 40,
1103.
(8) Mohsen, A.; Omar, M. E.; Ragab, M. S.; Farghaly, A. M.; Barghash, A.
M. Pharmazie 1976, 31, 348.
(9) For the corresponding tris(guanidine), see: (a) Dietrich, B.; Fyles, D. L.;
Fyles, T. M.; Lehn, J.-M. HelV. Chim. Acta 1979, 62, 2763. (b) Pitsch, S.;
Scheffer, U.; Strick, A.; Go¨bel, M. W. HelV. Chim. Acta 2003, 86, 3740.
TREN derived urea derivatives as anion receptors: (c) Raposo, C.; Almaraz,
M.; Martin, M.; Weinrich, V.; Mussons, M. L.; Alcazar, V.; Cruz Caballero,
M.; Moran, J. R. Chem. Lett. 1995, 759. (d) Werner, F.; Schneider, H.-J.
HelV. Chim. Acta 2000, 83, 465. (e) Xie, H.; Yi, S.; Wu, S. J. Chem. Soc.
Perkin Trans. 2 1999, 12, 2751. TREN derived urea derivatives as organic
gelators: (f) de Loos, M.; Ligtenbarg, A. G. J.; van Esch, J.; Kooijman,
H.; Spek, A. L.; Hage, R.; Kellogg, R. M.; Feringa, B. L. Eur. J. Org.
Chem. 2000, 22, 3675. TREN derived guanidines as ligands for metal
9
2212 J. AM. CHEM. SOC. VOL. 127, NO. 7, 2005