3
6
Forberg, D.; Obenauf, J.; Friedrich, M.; Huehne, S. M.; Mader, W.;
Motz, G.; Kempe, R. Catal. Sci. Tech. 2014, 4, 4188-4192.
hydrogenation of the double bond by the in situ formed metal
hydride would give the C-3 alkylated product (Scheme 3, Path
B). In this case, the Michael addition competes with the reduction
process under the microwave conditions.
7
8
9
Hille, T.; Irrgang, T.; Kempe, R. Chem. Eur. J. 2014, 20, 5569-5572.
Gunanathan, C.; Ben-David, Y.; Milstein, D. Science, 2007, 317, 790.
Penalopez, H.; Neumann, M.; Beller, M. Chem. Eur. J. 2014, 20, 1818-
1824.
10 Lida, K.; Miura, T.; Ando, J.; Saito, S. Org. Lett. 2013, 15, 1436-1439.
11 Bhat, S. and Sridharan, V. Chem. Commun. 2012, 48, 4701-4703.
12 (a) Loefberg, C.; Grigg, R.; Whittaker, W. A.; Keep, A.; Derrick, A. J.
Org. Chem. 2006, 71, 8023-8027; (b) Watson, A.; Maxwell, A. C.;
Williams, J. M. J. J. Org. Chem. 2011, 76, 2328-2331.
13 Hisahiro, H.; Norikazu, F.; Toshio, S.; Masayoshi, A.
Heterocycles,2009, 53, 549-552
Scheme 3
In conclusion we have developed an iridium catalyzed
dehydrogenation/ Knoevenagel type condensation/ Michael
addition cascade to give 3,3’-bis arylmethenes (Scheme 2, Path
A) in good yields.
Acknowledgments
We thank Leeds University for support.
Notes and references
1
2
Rehse, K.; Schinkel, W. Archiv der Pharmazie. 1983, 316, 988-994.
Minassi, A.; Cicione, L.; Koberle, A.; Bauer, J.; Laufer, S.; Werz, O.;
Appendino, G. Eur. J. Org. Chem. 2012, 772-779.
3
Review articles on redox-neutral process: (a) Hamid, H. S. A.; Slatford,
J. M. J. Adv. Synth. Catal, 2007, 349, 1555-1575; (b) Nixon, T. D.;
Whittlesey, M. K.; Williams, J. M. J. Dalton Trans. 2009, 753-762; (c)
Guillena, G.; Ramon, D. J.; Yus, M. Chem. Rev. 2010, 110, 1611-
1641;(d) Baehn, S.; Imm, S.; Neubert, L.; Zhang, M.; Neumann, H.;
Beller, M. Chem. Cat. Chem. 2011, 3, 1853-1864; (e) Yang, Q.; Wang,
Q.; Yu, Z. Chem. Soc. Rev., 2015, 44, 2757-2785.
4
For selected key papers with regard to Ir catalyzed C-C couplings see:
(a) Edwards, M. G.; Williams, J. M. J. Angew. Chem.Int. Ed. 2002, 41,
4740-4743; (b) Tauchi, K.; Nakagawa, H.; Hirabayashi, T.; Sakuchi,
S.; Ishii, Y. J. Am. Chem. Soc. 2004, 126, 72-73; (c) Motokura, K.;
Nishimura, D.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am.
Chem.Soc. 2004, 126, 5662-5663; (d) Lofberg, C.; Grigg, R.; Derrick,
A.; Sridharan, V.; Kilner, C. Chem. Commun. 2006, 5000-5002; (e)
Shibahara, F.; Bower, J.F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130,
6338-6339; (f) Bower, J. F.; Patman, R.L.; Krische, M.J. Org. Lett.
2008, 10, 1033-1035: (g) Bower, J. F.; Skucas, E.; Patman, R.L.;
Krische, M. J. J. Am. Chem. Soc. 2007, 129, 15134-15135; (h) Ngai,
M.Y.; Skucas, E.; Krische, M. J. Org.Lett. 2008, 10, 2705-2708: (i)
Patman, R.L.; Williams, V. M.; Bower, J.F.; Krische, M.J. Angew.
Chem. Int. Ed. 2008, 47, 1-5; (j) Patman, R.L.; Chaulagin, M.R,;
Williams, V.M.; Krische, M. J. J. Am. Chem.Soc. 2009, 131, 2066-
2067; (k) Grigg, R.; Lofberg, C.; Whitney, S.; Sridharan, V.; Keep, A.;
Derrick, A. Tetrahedron 2009, 65, 849-854; (l) Grigg, R.; Whitney, S.;
Sridharan, V.; Keep, A.; Derrick, A. Tetrahedron 2009, 65, 7468-7473;
(m) Ganamgari, D.; Sauer, E. L. O.; Schley, N. D.; Butler, C.;
Incarvito, C. D.; Crabtree, R. H. Organometallics 2009, 28, 321-325;
(n) Iuchi, Y.; Hyotanishi, M.; Miller, B. E.; Maede, K.; Obora, Y.;
Ishii, Y. J. Org. Chem. 2010, 75, 1803-1806; (m) Allen, L. J.;
Crrabtree, R. H. Green Chem. 2010, 12,1362-1364; (o) Blank, B.;
Kempe, R. J. Am. Chem. Soc. 2010, 132, 924-925; (p) Guo, L.; Liu, Y.;
Yao, W.; L:eng, X.; Haung, Z. Org. Lett. 2013, 15, 1144-1147.
Ruch, S.; Irrgang, T.; Kempe, R. Chem. Eur. J. 2014, 20, 13279-
13285.
5