Angewandte
Chemie
[9] For a crystal structure of the T7 RNA polymerase with the T7-
Other groups have also studied the regulation of gene
expression by light.[11] However in their approaches entire
plasmids or mRNA strands were subjected to benzylating
conditions in which the photolabile groups were attached
presumably to backbone phosphates. In contrast to the
strategy presented herein, this approach does not lead to a
well-defined product but rather to a statistical distribution of
caged positions and introduces more modifications than
necessary. In the other investigations the full transcriptional
activity could not be restored.
promoter region see: G. M. T. Cheetham, D. Jeruzalmi, T. A.
Steitz, Nature 1999, 399, 80 – 83.
[10] It was confirmed experimentally, in all cases, that the oligonu-
cleotides produced upon irradiation were indeed the expected
ones.
[11] a) W. T. Monroe, M. M. McQuain, M. S. Chang, J. S. Alexander,
F. R. Haselton, J. Biol. Chem. 1999, 274, 20895 – 20900; b) H.
Ando, T. Furuta, R. Y. Tsien, H. Okamoto, Nat. Genet. 2001, 28,
317 – 325.
In conclusion we have demonstrated that caged thymi-
dines can be used as temporary mismatches to inhibit a
function, transcription in this case. They can be introduced in
oligomers at any desired and well-defined position through
their easily accessible phosphoramidites 3a–e. With long-
wavelength UV light (366 nm) the photodeprotection of the
caged Tcd occurs fast, with high yield, and without formation of
nitroso compounds. One or two caged nucleotides at the right
position can be enough to completely inhibit a function.
Received: August 25, 2004
Keywords: DNA · gene expression · oligonucleotides ·
.
photoactivation
[1] a) Y. Dorsett, T. Tuschl, Nat. Rev. Drug Discovery 2004, 3, 318 –
329; b) D. P. Bartel, Cell 2004, 116, 281 – 297; c) M. Mandal,
R. R. Breaker, Nat. Rev. Mol. Cell Biol. 2004, 5, 451 – 463;
d) S. T. Crooke, Curr. Mol. Med. 2004, 4, 465 – 487; e) C. R. Dass,
Trends Pharmacol. Sci. 2004, 8, 395 – 397; f) D. S. Wilson, J. W.
Szostak, Annu. Rev. Biochem. 1999, 68, 611 – 647; g) Y. S. Cho-
Chung, Y. G. Park, Y. N. Lee, Curr. Opin. Mol. Ther. 1999, 1,
386 – 392; h) M. C. Pirrung, Angew. Chem. 2002, 114, 1326 –
1341; Angew. Chem. Int. Ed. 2002, 41, 1276 – 1289; i) N. C.
Seeman, Angew. Chem. 1998, 110, 3408 – 3428; Angew. Chem.
Int. Ed. 1998, 37, 3220 – 3238.
[2] a) “Caged Compounds”: Methods in Enzymology, Vol. 291 (Ed.:
G. Mariott), Academic, London, 1998; b) A. P. Pelliccioli, J.
Wirz, Photochem. Photobiol. Sci. 2002, 1, 441 – 458.
[3] J. H. Kaplan, B. Forbush III, J. F. Hoffman, Biochemistry 1978,
17, 1929 – 1935.
[4] a) K. Alvarez, J. J. Vasseur, T. Beltran, J. L. Imbach, J. Org.
Chem. 1999, 64, 6319 – 6328; b) S. Pitsch, P. A. Weiss, X. Wu, D.
Ackermann, T. Honegger, Helv. Chim. Acta 1999, 82, 1753 –
1761.
[5] S. G. Chaulk, A. M. MacMillan, Nucl. Acids Res. 1998, 26, 3173 –
3178.
[6] a) A. Dussy, C. Meyer, E. Quennet, T. A. Bickle, B. Giese, A.
Marx, ChemBioChem 2002, 3, 54 – 60; b) C. Crey-Desbiolles, J.
Lhomme, P. Dumy, M. Kotera, J. Am. Chem. Soc. 2004, 126,
9532 – 9533; c) H. J. Lenox, C. P. McCoy, T. L. Sheppard, Org.
Lett. 2001, 3, 2415 – 2418; d) M. C. Pirrung, X. Zhao, S. V. Harris,
J. Org. Chem. 2001, 66, 2067 – 2071; e) P. Ordukhanian, J. S.
Taylor, Bioconjugate Chem. 2000, 11, 94 – 103.
[7] a) A. Hasan, K. P. Stengele, H. Giegrich, P. Cornwell, K. R.
Isham, R. A. Sachleben, W. Pfleiderer, R. S. Foote, Tetrahedron
1997, 53, 4247 – 4264; b) H. Giegrich, S. Eisele-Bꢀhler, C.
Hermann, E. Kvasyuk, R. Charubala, W. Pfleiderer, Nucleosides
Nucleotides 1998, 17, 1987 – 1996; c) S. Bꢀhler, H. Giegrich, W.
Pfleiderer, Nucleosides Nucleotides 1999, 18, 1281 – 1283.
[8] S. Walbert, W. Pfleiderer, U. E. Steiner, Helv. Chim. Acta 2001,
84, 1601 – 1611.
Angew. Chem. Int. Ed. 2005, 44, 471 –473
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
473