1236
T. Kawano et al. / Tetrahedron Letters 46 (2005) 1233–1236
J = 2.9 Hz), 7.30 (dd, 1H, J = 2.9, 5.1 Hz), 7.25 (d, 1H,
J = 5.1 Hz), 7.18 (d, 1H, J = 5.1 Hz), 7.06 (d, 1H, J =
5.1 Hz), 5.98 (d, 1H, J = 5.4Hz), 2.52 (d, 1H, J = 5.4Hz),
0.20 (s, 9H) ppm. IR (neat) m 3400, 2140, 2100 cmÀ1. Anal.
Calcd for C20H16OS2Si: C, 65.89; H, 4.42; S, 17.59.
Found: C, 65.99; H, 4.64; S, 17.66. FABMS (NBA) m/z
387 [M+Na]+. Compound 2: brown powder, mp 56.7–
58.5 °C, 1H NMR (400 MHz, CDCl3) d 7.54(d, 1H,
J = 7.6 Hz), 7.37 (t, 1H, J = 7.6 Hz), 7.32–7.20 (m, 3H),
7.07 (d, 1H, J = 5.4Hz), 6.00 (d, 1H, J = 5.4Hz), 4.64(s,
2H) 2.91–2.84(m, 3H), 2.72 (s, 1H), 1.50–1.4(m, 9H),
Boc group as carbon dioxide and isobutene. In the case
of compound 15, low yield of compounds 20 and 21
might be due to fast decomposition of intermediate B.
Further studies on the effect of the aromatic moiety
and substituents on the reactivity of the tetraynes will
be reported in detail elsewhere.
In conclusion, we have demonstrated a novel synthetic
method for the preparation of indenothiophenone deriva-
tives by cycloaromatization of non-conjugated thienyl
tetraynes. Further studies on the mechanism of the reac-
tion in this study, and application to other hetero ring-
fused indene derivatives are now in progress.
0.20 (s, 9H) ppm. IR (neat) m 3340, 2220, 2100, 1660 cmÀ1
.
Anal. Calcd for C29H31NO3SSi: C, 69.42; H, 6.22; N, 2.79;
S, 6.39. Found: C, 69.15; H, 6.01; N, 2.65; S, 6.56.
FABMS (NBA) m/z 524[M+Na] +. Compound 3: pale
yellow oil; 1H NMR (400 MHz, CDCl3) d 7.54(d, 1H,
J = 7.6 Hz), 7.49 (d, 1H, J = 7.6 Hz), 7.40 (t, 1H, J =
7.6 Hz), 7.27 (t, 1H, J = 7.6 Hz), 7.26 (d, 1H, J = 5.1 Hz),
7.08 (d, 1H, J = 5.1 Hz), 6.00 (d, 1H, J = 5.4Hz), 4.66 (s,
2H), 3.49 (s, 3H), 2.53 (d, 1H, J = 5.4Hz), 0.20 (s, 9H); IR
Acknowledgments
We thank the Materials Analysis Center of ISIR-San-
ken, Osaka University for assisting us with elemental
analysis.
(neat): 3340, 2350, 2100 cmÀ1
;
Anal. Calcd for
C24H22O2SSi: C, 71.60; H, 5.51; S, 7.96. Found: C,
71.40; H, 5.39; S, 7.78. FABMS (NBA) m/z 402
[(M+H)]+. Calcd for Compound 16: yellow powder, mp
206.0–207.0 °C, 1H NMR (400 MHz, CDCl3) d 7.77 (d,
1H, J = 4.6 Hz), 7.41 (d, 1H, J = 4.6 Hz), 7.40 (d, 1H,
J = 4.9 Hz), 7.25 (s, 1H), 7.11 (d, 1H, J = 4.9 Hz), 6.89–
6.86 (m, 2H), 6.77–6.74(m, 2H), 5.27 (t, 1H, J = 5.9 Hz),
4.94 (t, 1H, J = 5.9 Hz), 0.12 (s, 9H) ppm. IR (neat) m
2150, 1700 cmÀ1. Anal. Calcd for C26H20OS2Si: C, 70.87;
H, 4.57; S, 14.45. Found: C, 70.62; H, 4.49; S, 14.82.
FABMS (NBA) m/z 441 [M+H]+. Compound 18: red
powder, mp 194.5–195.0 °C, 1H NMR (400 MHz, CDCl3)
d 8.67 (d, 1H, J = 7.3 Hz), 7.67 (d, 1H, J = 4.9 Hz), 7.35–
7.30 (m, 2H), 7.20 (d, 1H, J = 7.3 Hz), 7.14(d, 1H,
J = 4.9 Hz), 4.07 (s, 2H) 2.73 (s, 3H), 1.66 (s, 9H), 0.31 (s,
9H) ppm. IR (neat) m 2160, 1720, 1710 cmÀ1. Anal. Calcd
for C29H29NO3SSi: C, 69.70; H, 5.85; N, 2.80; S, 6.42.
Found: C, 69.93; H, 5.89; N, 2.66; S, 6.46. FABMS (NBA)
m/z 500 [M+H]+. Compound 20: yellow plates; mp 129.4–
129.8 °C; 1H NMR (400 MHz, CDCl3) d 8.79 (d, 1H,
J = 7.6 Hz), 7.71 (d, 1H, J = 4.6 Hz), 7.40–7.30 (m, 2H),
7.20 (d, 1H, J = 7.6 Hz), 7.10 (d, 1H, J = 4.6 Hz), 6.86 (s,
References and notes
1. Ewen, J. A.; Elder, M. J.; Jones, R. L.; Rheingold, A. L.;
Liable-Sands, L. M.; Sommer, R. D. J. Am. Chem. Soc.
2001, 123, 4763–4773.
2. Ryabov, A. N.; Gribkov, D. V.; Izmer, V. V.; Vosko-
boynikov, A. Z. Organometallics 2002, 21, 2842–2855.
3. MacDowell, D. W. H.; Patrick, T. B. J. Org. Chem. 1967,
32, 2441–2445.
4. Krubsack, A. J.; Higa, T. Tetrahedron Lett. 1972, 47,
4823–4826.
5. Mataka, S.; Ohshima, T.; Tashiro, M. J. Org. Chem. 1981,
46, 3960–3964.
6. Campo, M. A.; Larock, R. C. J. Org. Chem. 2002, 67,
5616–5620.
7. Kashulin, I. A.; NifantÕev, I. E. J. Org. Chem. 2004, 69,
5476–5479.
8. Miyawaki, K.; Suzuki, R.; Kawano, T.; Ueda, I. Tetra-
hedron Lett. 1997, 38, 3943–3946.
9. Kawano, T.; Ikemoto, C.; Ueda, I. Tetrahedron Lett.
1998, 39, 6491–6494.
1H), 5.05 (s, 2H), 0.34(s, 9H); IR (KBr): 2150, 1700 cm À1
;
Anal. Calcd for C23H18O2SSi: C, 71.47; H, 4.69; S, 8.30.
Found: C, 71.20; H, 4.65; S, 8.47. FABMS (NBA) m/z 387
[(M+H)]+.
10. Miyawaki, K.; Kawano, T.; Ueda, I. Tetrahedron Lett.
1998, 39, 6923–6926.
11. Miyawaki, K.; Kawano, T.; Ueda, I. Tetrahedron Lett.
2000, 41, 1447–1451.
12. Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508–
524.
13. Mitchell, T. N. Synthesis 1992, 803–815.
14. Holmes, A. B.; Jenning-White, C. L. D.; Schulthess, A. H.;
Akinde, B.; Walton, D. R. M. J. Chem. Soc., Chem.
Commun. 1979, 840–842.
15. Miyawaki, K.; Ueno, F.; Ueda, I. Heterocycles 2000, 54,
887–900.
17. There have been many reports on generation of radical in
cycloaromatization of ene–yne derivatives. For examples,
see: Usuki, T.; Mita, T.; Lear, M. J.; Das, P.; Yoshimura,
F.; Inoue, M.; Hirama, M.; Akiyama, K.; Toro-Kubota,
S. Angew. Chem., Int. Ed. 2004, 43, 5243–5249.
18. Suzuki, I.; Shigenaga, A.; Nemoto, H.; Shibuya, M.
Tetrahedron Lett. 2004, 45, 1955–1959.
19. Turro, N. J.; Evenzahav, A.; Nicolaou, K. C. Tetrahedron
Lett. 1994, 35, 8089–8092.
20. Nicolaou, K. C. Angew. Chem., Int. Ed. Engl. 1993, 32,
1377–1500.
16. All new products obtained in this study were characterized
by spectroscopy (NMR, IR and FABMS) and elemental
analysis. Selected physical data are as follows. Compound
21. Bergman, R. G. Acc. Chem. Res. 1973, 6, 25–31.
22. Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94,
660–661.
1
1: brown oil, H NMR (400 MHz, CDCl3) d 7.62 (d, 1H,