4626
K. Nakamoto et al. / Bioorg. Med. Chem. Lett. 20 (2010) 4624–4626
Scheme 2. Synthesis of benzylthiophene amide derivative.
Hata, K.; Kimura, J.; Miki, H.; Toyosawa, T.; Moriyama, M.; Katsu, K. Antimicrob.
Table 1
Agents Chemother. 1996, 40, 2243.
Antifungal activity of 8, 9, 10a–d and 15 against C. albicans and A. fumigatus
9. (a) Tawara, S.; Ikeda, F.; Maki, K.; Morishita, Y.; Otomo, K.; Teratani, N.; Goto, T.;
Tomishima, M.; Ohki, H.; Yamada, A.; Kawabata, K.; Takasugi, H.; Sakane, K.;
Tanaka, H.; Matsumoto, F.; Kuwahara, S. Antimicrob. Agents Chemother. 2000,
44, 57; (b) Ikeda, F.; Wakai, Y.; Matsumoto, S.; Maki, K.; Watanabe, E.; Tawara,
S.; Goto, T.; Watanabe, Y.; Matsumoto, F.; Kuwahara, S. Antimicrob. Agents
Chemother. 2000, 44, 614.
Compd
MIC (lg/ml)
C. albicans
A. fumigatus
8
9
10a
10b
10c
10d
15
1
0.1
1.56
3.13
N.T.
0.78
1.56
0.78
0.78
N.T.
N.T.
0.78
0.39
1.56
0.05
0.78
0.39
0.05
1.56
0.39
1.56
10. Kapteyn, J. C.; Van Den Ende, H.; Klis, F. M. Biochim. Biophys. Acta 1999, 1426,
373.
11. Mayor, S.; Riezman, H. Nat. Rev. Mol. Cell Biol. 2004, 5, 110.
12. Tsukahara, K.; Hata, K.; Nakamoto, K.; Sagane, K.; Watanabe, N.; Kuromitsu, J.;
Kai, J.; Tsuchiya, M.; Ohba, F.; Jigami, Y.; Yoshimatsu, K.; Nagasu, T. Mol.
Microbiol. 2003, 48, 1029; Tsukahara, K.; Hata, K.; Sagane, K.; Nakamoto, K.;
Tsuchiya, M.; Watanabe, N.; Oba, F.; Tsukada, I.; Ueda, N.; Tanaka, K.; Kai, J. WO
02/04626, 2002.
Fluconazole
Amphotericin B
13. Umemura, M.; Okamoto, M.; Nakayama, K.; Sagane, K.; Tsukahara, K.; Hata, K.;
Jigami, Y. J. Biol. Chem. 2003, 278, 23639.
14. (a) Rivaille, P.; Gautron, J. P.; Castro, B.; Milhaud, G. Tetrahedron 1980, 36, 3413;
(b) Hudson, D. J. Org. Chem. 1988, 53, 617; (c) Wong, B. B.; Magahmi, N.;
Goodlin, V. L.; Smith, P. J. Bioorg. Med. Chem. Lett. 2004, 14, 3221; (d) Nakamoto,
K.; Tsukada, I.; Tanaka, K.; Matsukura, M.; Haneda, T.; Inoue, S.; Ueda, N.; Abe,
S.; Hata, K.; Watanabe, N. WO 05/033079, 2005.; (e) Nakamoto, K.; Inoue, S.;
Tanaka, K.; Haneda, T. WO 06/106711, 2006.
15. In vitro susceptibility tests: Candida albicans E81022, Aspergillus fumigatus
Tsukuba and Saccharomyces cerevisiae W303-1A were used in this study. S.
cerevisiae W303-1A was transformed with empty vector (strain KE743) or
multi-copy vector Yep352GAPII-GWT1, in which S. cerevisiae GWT1 was
overexpressed in the presence of GAPDH promoter (strain KE744). The MICs
were determined with the broth-microdilution method developed by the
Clinical and Laboratory Standards Institute and reported in documents M27-A3
and M38-A2 with slight modification. The test compounds were dissolved in
dimethyl sulfoxide (DMSO) to yield a concentration of 20 mg/mL and further
serially twofold diluted with DMSO and test media to achieve a range of final
Table 2
Antifungal activity of 8,
S. cervisiae
9 and 10a–d against GWT1-overexpressing strain of
Compd
MIC (
l
g/ml)
Degree of
resistance
S. cerevisiae KE743
S. cerevisiae KE744
8
9
10a
10b
10c
10d
0.025
0.2
1.56
0.1
1.56
0.78
6.25
0.78
3.13
128
>64
>8
128
>8
16
1
>12.5
>12.5
12.5
>12.5
12.5
Fluconazole
Amphotericin B
6.25
0.78
concentrations from 200 to 0.05 lg/mL. The C. albicans strain was subcultured
1
in Sabouraud dextrose broth medium (SDB; Becton, Dickinson and Company,
Sparks, MD) at 35 °C for 1–2 days. The A. fumigatus strain was subcultured on
potato dextrose agar (PDA; Eiken Chemical Co., Tokyo, Japan) at 35 °C for one
week and the collected conidia was stored at À80 °C before testing. The strains
of S. cerevisiae KE743 and S. cerevisiae KE744 were subcultured in yeast
nitrogen base medium (SD ura-; Becton, Dickinson and Company) at 30 °C for
References and notes
1–2 days. The wells were inoculated with 100 lL of the culture suspension
1. Dismukes, W. E. Clin. Infect. Dis. 2006, 42, 1289.
diluted to a final inoculum of 2 Â 103–2 Â 104 cells or conidia per ml with SDB
medium, RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd, Tokyo, Japan)
buffered to pH 7.0 with 0.165 M 3-[N-morpholino] propanesulfonic acid
(MOPS; Wako Pure Chemical Industries, Ltd, Osaka, Japan) or SD ura- medium.
The test organisms were cultured in medium containing test compounds
2. Spanakis, E. K.; Aperis, G.; Mylonakis, E. Clin. Infect. Dis. 2006, 43, 1060.
3. Odds, F. C.; Brown, A. J. P.; Gow, N. A. R. Trends Microbiol. 2003, 11, 272.
4. Sheehan, D. J.; Hitchcock, C. A.; Sibley, C. M. Clin. Microbiol. Rev. 1999, 12.
5. Fridkin, S. K.; Jarvis, W. R. Clin. Microbiol. Rev. 1996, 9, 499.
6. Jana, C.; Julius, S. Int. J. Antimicrob. Agents 2006, 27, 403.
(0.05–200
and A. fumigatus. The MICs of test compounds were measured after two days of
incubation, and were defined as the lowest concentrations at which
lg/mL) or 1% DMSO at 30 °C for S. cerevisiae or 35 °C for C. albicans
7. (a) Dickinson, R. P.; Bell, A. S.; Hitchcock, C. A.; Nayayanaswami, S.; Ray, S. J.;
Richardson, K.; Troke, P. F. Bioorg. Med. Chem. Lett. 1996, 6, 2031; (b) Herbrecht,
R. Expert Rev. AntiInfect. Ther. 2004, 2, 485.
8. (a) Tsuruoka, A.; Kaku, Y.; Kakinuma, H.; Tsukada, I.; Yanagisawa, M.; Nara, K.;
Naito, T. Chem. Pharm. Bull. 1998, 46, 623; (b) Fung-Tomc, J. C.; Huczko, E.;
Minassian, B.; Bonner, D. P. Antimicrob. Agents Chemother. 1998, 42, 313; (c)
a
prominent decrease in turbidity could be determined visually relative to that
in the control well.