2464
S. Koul et al. / Tetrahedron: Asymmetry 14 (2003) 2459–2465
drous calcium chloride and the solution used directly
for racemisation reaction.
References
1. Shen, T. Y.; Windholtz, T. B.; Witzel, B. E.; Wilson, A.
N.; Willett, J. B.; Hdtzi, W. J.; Ellis, R. L.; Rosegay, A.;
Lucas, S.; Matzuk, A. R.; Stoimmer, C. H.; Holly, F. W.;
Sarett, L. H.; Risley, E. A.; Nuss, G. W.; Winter, C. A.
J. Am. Chem. Soc. 1963, 85, 488–489.
3.6. Racemisation of (R)-enriched ester
A toluene solution comprising of enriched (R)-(−)-
methyl ester of 6-methoxy-a-methyl-2-naphthalene ace-
tic acid (approx. 2.7 kg, ꢀ11 mol) was initially
concentrated (5 L toluene distilled over) to remove the
last traces of water. To the remaining solution was
added either freshly cut sodium metal (40 g) or freshly
prepared sodium methoxide (prepared from 40 g
sodium metal and dry methanol). The contents were
then refluxed and reaction monitored by chiral HPLC.
After complete racemisation (2.5–3 h), the mixture was
cooled, neutralized with concentrated sulfuric acid (50
mL) and washed with water until pH 7 was attained.
The organic layer was dried over anhydrous sodium
sulfate and concentrated at reduced pressure to furnish
the racemised ester (2.6 kg, 98% yield). The racemic
ester thus obtained was decolourised by activated car-
bon prior to micronisation and reuse for kinetic
resolution
2. Adams, S. S.; Cobb, R. Progr. Med. Chem. 1967, 5,
59–138.
3. Lambardino, J. G. Nonsteriodal Anti-inflammatory
Drugs; John Wiley & Sons: New York, 1985.
4. Harrison, I. T.; Lewis, B.; Nelson, P.; Rooks, W.;
Roszkowski, A.; Tomolenis, A.; Fried, J. H. J. Med.
Chem. 1970, 13, 203–205.
5. Sheldon, R. A. Chirotechnology; Marcel Dekker: New
York, 1993; p. 56.
6. Islam, M. R.; Mahdi, J. G.; Bowen, I. D. Drug Safety
1997, 17, 149.
7. Sonawane, H. R.; Bellur, N. S.; Ahuja, J. R.; Kulkarni,
D. G. Tetrahedron: Asymmetry 1992, 3, 163–192.
8. Zhang, B.; Wei, H.; Zhansheng, Y. Zhouggue Yiyao
Gongye Zazhi. 1999, 30, 426–430; Chem. Abstr. 2000, 132,
122321.
9. Nugent, W. A.; Rajanbabu, T. V.; Burk, M. J. Science
1993, 259, 479–483.
10. Hu, A.; Fan, G.; Zhao, H. Yauxue Xuebao 1999, 34,
290–293; Chem. Abstr. 1999, 131, 144396; Chem. Abstr.
2000, 132, 194103.
4. Conclusion
11. Xiang, Liu.; Qiao, S.; Bao, M.; Zhu, T. Wuxi Qingong
Daxue Xuebao. 2000 19, 500–502; Chem. Abstr. 2001,
135, 107128.
12. Newman, P. Optical Resolution Process for Organic Com-
pounds; Manhattan College: New York, 1981; Vol. 2, p.
653.
13. Felder, E.; Pitre, D.; Zutler, H. UK Pat. Appl. 2025968
A, 1980.
14. Gist Brocades, N. V. 1986 JP 63,45,234, 26-02-88 FR
Appl. 88,245 07-01-1986; Chem. Abstr. 1988, 109, 168975.
15. Qu-Meng; Chen, C.-S.; Sih, C.-J. Tetrahedron Lett. 1986,
27, 1763–1766.
16. Bianchi, D.; Cesti, P.; Pina, C.; Battislet, E. 1988 Eur.
Pat. Appl. EP 330, 217, 30.08.89 IT 88/19, 532,
25.02.1988; Chem. Abstr. 1990, 112, 251202.
17. Matson, S. L.; Wald, S. A.; Zepp, C. M.; Dodds, D. R.
1988 PCT Int. Appl. WO 89,09,765, 9.10.89 US Appl.
178735, 07.04.1988; Chem. Abstr. 1990, 113, 171683.
18. Tsai, S.; Wei, L.; Shiang, F.; Chang, C. J. Chem. Technol.
Biotechnol. 1999, 74, 751–758.
19. Chang, C.; Tsai, S.; Wei, K. J. Biotechnol. Bioeng. 1999,
64, 120–126.
20. Xin, J. Y.; Li, S.; Chen, X.; Wang, L. Enzyme Microb.
Technol. 2000, 26, 137–141.
Trichosporon sp. (TSL) whole cells or its cell free ester
hydrolase selectively hydrolyses ( )-6-methoxy-a-
methyl-2-naphthaleneacetic acid alkyl ester to yield (S)-
naproxen. The yeast organism, or the enzyme derived
from it, depicts a very high enantioselectivity (ee >99%,
E=500) in resolving the racemic ester into the free acid
and unhydrolysed ester. The rate of hydrolysis
increased significantly with a decrease in substrate par-
ticle size from <50 to 200 mesh. The enzyme to sub-
strate ratio of 85 U of enzyme per gram of the substrate
was optimal with the rate of hydrolysis not much
influenced up to a substrate concentration of 100 g/L.
Temperature in the range of 28–32°C and pH between
7 and 8 were found to be optimum for the best time
space yield and enantioselectivity. The use of a buffer
or an aqueous solution had no direct effect on the rate
of the hydrolysis or enantioselectivity. The use of co-
solvents also did not show any advantage. A racemisa-
tion method using sodium metal or sodium methoxide
for enriched (R)-(−)-ester has also been optimized with
a >98% yield. With this step, a practical and semi
dynamic process has been developed for the conversion
of ( )-naproxen ester to (S)-naproxen.
21. Bando, T.; Namba, Y.; Shishido, K. Tetrahedron: Asym-
metry 1997, 8, 2159–2165.
22. Fallon, R. D.; Steightz, B. 1992 PCT. Int. Appl WO
94,06, 930, 31.03.94 US Appl. 948,185 21.09. 92; Chem
Abstr. 1994, 121, 81125.
Acknowledgements
23. Effenberger, F.; Graef, B. W.; Osswald, S. Tetrahedron:
Asymmetry 1997, 8, 2749–2755.
24. Reid, A. J.; Phillips, G. T.; Marix, A. F.; DeSmet, M. J.
1988 Eur. Pat. Appl. EP 338, 645, 25.10. 89 GB Appl.
88/9, 434. 21.04.1988; Chem. Abstr. 1990, 113, 38895.
We are thankful to M/s NATCO Pharma, Hyderabad
and Searle India Ltd. Mumbai for the supply of raw
materials and authentic samples of (S)-(+)-naproxen
and M/s Amano, Japan for a gift of Pseudomonas sp.
lipase.