LETTER
Asymmetric Synthesis of (+)-Absouline
233
(2) For representative approaches to optically active a-
HPLC analysis on a Chiralcel OD-H column (eluent: hep-
tane–EtOH 90:10 + 0.1% Et3N; 0.75 mL/min, l = 290
nm) showed that our synthetic (+)-absouline (4,
tR = 12.011 min) is identical with that of natural
absouline26 (4, tR = 12.009 min). In addition, since racem-
ic 14 has been converted to racemic 5-HT antagonist for
serotonine receptor 39 and alkaloid laburnamine (6),14 re-
spectively, the synthesis of (+)-14 also provides a ready
precursor for the asymmetric synthesis of 3 and labur-
namine (6).
lithiopyrrolidines and a-lithiopiperidines, see: (a) Meyers,
A. I.; Dickman, D. A.; Bailey, T. R. J. Am. Chem. Soc. 1985,
107, 7974. (b) Huang, P.-Q.; Arseniyadis, S.; Husson, H.-P.
Tetrahedron Lett. 1987, 28, 547. (c) Gawley, R. E.; Hart, G.
C.; Bartolotti, L. J. J. Org. Chem. 1989, 54, 175.
(d) Pearson, W. H.; Lindbeck, A. C.; Kampf, J. W. J. Am.
Chem. Soc. 1993, 115, 2622. (e) Wu, S.; Lee, S.; Beak, P. J.
Am. Chem. Soc. 1996, 118, 715. (f) Coldham, I.; Hufton, R.;
Snowden, D. J. Am. Chem. Soc. 1996, 118, 5322.
(g) Dearden, M. J.; Firkin, C. R.; Hermet, J.-P. R.; O’Brien,
P. J. Am. Chem. Soc. 2002, 124, 11870. (h) Wiberg, K. B.;
Bailey, W. F. Angew. Chem. Int. Ed. 2000, 39, 2127.
(i) Watson, R. T.; Gore, V. K.; Chandupatla, K. R.; Dieter,
R. K.; Snyder, J. P. J. Org. Chem. 2004, 69, 6105.
(3) For a racemic synthetic equivalent to synthon 2b (X = OH,
OP), see: Thompson, S. H. J.; Subramanian, R. S.; Roberts,
J. K.; Hadley, M. S. J. Chem. Soc., Chem. Commun. 1994,
933.
(4) For chiral non-racemic synthetic equivalents to synthon 2b
(X = OH, OP), see: (a) Huang, P.-Q.; Wu, T.-J.; Ruan, Y.-P.
Org. Lett. 2003, 5, 4341. (b) Huang, P.-Q.; Deng, J. Synlett
2004, 247.
CbzHN
CbzHN
BH3·SMe2, hexane
EtOH, 3 M NaOH, H2O2
50%
N
N
X
Boc-t
Boc-t
MsCl, Et3N
CH2Cl2
11 X = OH
12 X = OMs
10i
90%
3M HCl, diox.
r.t., 12 h;
NH2
NHCbz
H
N
H
Pd/C, H2
(5) Beak, P.; Lee, W. K. J. Org. Chem. 1993, 58, 1109.
(6) (a) Sunose, M.; Peakman, T. M.; Charmant, J. P. H.;
Gallagher, T.; Macdonald, S. J. F. Chem. Commun. 1998,
1723. (b) Pandey, G.; Chakrabarti, D. Tetrahedron Lett.
1998, 39, 8371; and references cited therein.
6M HCl
78%
basification
71%
N
·2HCl
14
13
O
H
H
(7) For approaches to optically active 2-substituted 3-
aminopyrrolidines, see: (a) Iwanami, S.; Takashima, M.;
Hirata, Y.; Hasegawa, O.; Usuda, S. J. Med. Chem. 1981, 24,
1224. (b) Drugs Future 1991, 16, 95. (c) Andres, C. J.; Lee,
P. H.; Nguyen, T. H.; Meyers, A. I. J. Org. Chem. 1995, 60,
3189. (d) Huang, P.-Q.; Wang, S. L.; Ye, J. L.; Ruan, Y. P.;
Huang, Y. Q.; Zheng, H.; Gao, J. Tetrahedron 1998, 54,
12547. (e) Borthwick, A. D.; Crame, A. J.; Davies, D. E.;
Exall, A. M.; Jackson, D. L.; Mason, A. M.; Pennell, A. M.
K.; Weingarten, G. G. Synlett 2000, 504. (f) Cooke, J. W.
B.; Berry, M. B.; Caine, D. M.; Cardwell, K. S.; Cook, J. S.;
Hodgson, A. J. Org. Chem. 2001, 66, 334. (g) Andrews, D.
M.; Carey, S. J.; Chaignot, H.; Coomber, B. A.; Gray, N. M.;
Hind, S. L.; Jones, P. S.; Mills, G.; Robinson, J. E.; Slater,
M. J. Org. Lett. 2002, 4, 4475.
An-p
N
H
N
HO2C
H
OMe
DCC, DMAP,
CH2Cl2, 0 °C to r.t.
46%
4 (1S,8R)-(+)-absouline
Scheme 4
In summary, protected 3-amino-2-thiophenyl-pyrrolidine
7 was shown to be a valuable synthetic equivalent to dian-
ion 2a. The latter reacted with C-electrophiles to give the
C-C bond formation products 10b–i in 49–86% yields,
with excellent stereoselectivity at the newly formed C-2
stereogenic center. The diprotected (2R,3S)-2-allyl-3-
aminopyrrolidine (10i) was converted to (+)-absouline (4)
in five steps.
(8) For approaches to racemic 2-substituted 3-
aminopyrrolidines, see: (a) MacDonald, S. J. F.; Clarke, G.
D. E.; Dowle, M. D.; Harrison, L. A.; Hodgson, S. T.; Inglis,
G. G. A.; Johnson, M. R.; Shah, P.; Upton, R. J.; Walls, S. B.
J. Org. Chem. 1999, 64, 5166. (b) Norton Matos, M. R. P.;
Afonso, C. A. M.; Batey, R. A. Tetrahedron Lett. 2001, 42,
7007. (c) Suero, R.; Gorgojo, J. M.; Aurrecoechea, M.
Tetrahedron 2002, 58, 6211.
Acknowledgment
The authors are grateful to the National Science Fund for Distin-
guished Young Investigators, the NSF of China (20272048;
203900505) and the Ministry of Education (Key Project 104201)
for financial support.
(9) Flynn, D. L.; Zabrowski, D. L.; Becker, D. P.; Nosal, R.;
Villamil, C. I.; Gullickson, G. W.; Moummi, C.; Yang, D.-
C. J. Med. Chem. 1992, 35, 1489.
(10) (a) For a recent asymmetric synthesis of 1-
aminopyrrolizidine, see: Giri, N.; Petrini, M.; Profeta, R. J.
Org. Chem. 2004, 69, 7303. (b) For an approach to optically
active 1-aminopyrrolizidin-3-one derivative, see: Langlois,
N.; Radom, M.-O. Tetrahedron Lett. 1998, 39, 857.
(11) For approaches to racemic 1-aminopyrrolizidines, see:
(a) Suri, K. A.; Suri, O. P.; Sawhney, R. S.; Gupta, O. P.;
Atal, C. K. Indian J. Chem., Sect. B 1977, 15, 972. (b) Suri,
K. A.; Suri, O. P.; Atal, C. K. Indian J. Chem., Sect. B 1983,
22, 822. (c) Zabrowski, D. L.; Becker, D. P.; Nosal, R.;
Villamil, C. I.; Gullikson, G. W.; Moummi, C.; Yang, D.-C.
J. Med. Chem. 1992, 35, 1486. (d) Ref. 13.
References
(1) For reviews involving the generation and application of a-
lithioamines, see: (a) Gant, T. G.; Meyers, A. I. Tetrahedron
1994, 50, 2297. (b) Beak, P.; Basu, A.; Gallagher, D. J.;
Park, Y. S.; Thayumanavan, S. Acc. Chem. Res. 1996, 29,
552. (c) Gawley, R. E. Curr. Org. Chem. 1997, 1, 71.
(d) Kessar, S. V.; Singh, P. Chem. Rev. 1997, 97, 721.
(e) Katritzky, A.; Qi, M. Tetrahedron 1998, 54, 2647.
(f) Husson, H. P.; Royer, J. Chem. Soc. Rev. 1999, 28, 383.
(g) Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi, G. Chem.
Soc. Rev. 2000, 29, 109.
Synlett 2005, No. 2, 231–234 © Thieme Stuttgart · New York