Chemistry Letters Vol.34, No.2 (2005)
165
tacked oneside of the neighboring phenylene ring. The bridged
chiral sulfonio group located on the oneside of the phenylene
ring to yield the helical ladder structure with one-sided bias. This
synthetic route is expected to be applicable for the preparation of
other sulfur-containing helical ladder polymers.
TfO
CH3
CH3
S
S
TfO
CH3O
O
O
O
O
CF3SO3H
CF3SO3H
5-(R)
5-(S)
6-(R)
6-(S)
OCH3
CH3
TfO
CH3
S
O
S
S
This work was partially supported by Grant-in-Aid for the
Scientific Research and the COE Research Programs ‘‘Molecular
Nano-Engineering’’ and ‘‘Practical Nano-Chemistry’’ from
MEXT, Japan.
TfO
CH3O
TfO
CH3 OCH3
6-(R)
6-(S)
References and Notes
Scheme 3.
1
a) T. Nakano and Y. Okamoto, Chem. Rev., 101, 4013
(2001). b) C. Yamamoto, E. Yashima, and Y. Okamoto,
J. Am. Chem. Soc., 124, 12583 (2002).
a) E. Yashima, K. Maeda, and Y. Okamoto, Nature, 399, 449
(1999). b) E. Yashima, K. Maeda, and T. Nishimura,
Chem.—Eur. J., 10, 42 (2004).
conjugation or the ladder structure of 6-(R). The (S)-enantiom-
ers, 5-(S)14 and 6-(S),15 were also synthesized according to the
same procedure of the corresponding 5-(R) and 6-(R), respec-
tively.
2
Circular dichroism (CD) of the monomer, 4-(R) and 4-(S),
exhibited the peak at 239 nm ascribed to the chirality of the
pendant sulfoxide, which also appeared in the CD of the precur-
sors, 5-(R) and 5-(S). However, no Cotton effect was observed
beyond the wavelength of 270 nm. On the other hand, 6-(R)
and 6-(S) showed the CD extremum at 246 nm and the Cotton
effect between 278–350 nm (Figure 1). The former CD extrem-
um was attributed to the chiral sulfonio bridge and the latter
broad one corresponded to the ꢀ–ꢀꢀ transition in the UV–vis ab-
sorption, suggesting the formation of a helical structure. 6-(R)
and 6-(S) had a symmetrical CD profile in the positive and neg-
ative sides, which was not influenced by the temperature in the
range of 20–50 ꢁC. These results indicated that the helicity of
the ladder polymer was caused by the chirality of the monomer.
In other words, the helicity of the ladder polymer 6 could be con-
trolled by the enantiotropy of the diethyl tartrate during the
asymmetric oxidation of the monomer.
3
4
5
6
M. Fujiki, J. R. Koe, M. Motonaga, H. Nakashima, K. Terao,
and A. Teramoto, J. Am. Chem. Soc., 123, 6253 (2001).
M. M. Green, K.-S. Cheon, S.-Y. Yang, J.-W. Park, S.
Swansburg, and W. Liu, Acc. Chem. Res., 34, 672 (2001).
D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes, and J. S.
Moore, Chem. Rev., 101, 3893 (2001).
a) T. Verbiest, S. V. Elshocht, M. Kaouranen, L. Hellemans,
J. Snauwaert, C. Nuckolls, T. J. Katz, and A. Persoons,
Science, 282, 913 (1998). b) K. E. S. Phillips, T. J. Katz,
S. Jockusch, A. J. Lovinger, and N. J. Turro, J. Am. Chem.
Soc., 123, 11899 (2001).
7
8
9
K. Tanaka, H. Suzuki, and H. Osuga, J. Org. Chem., 62, 4465
(1997).
T. Caronna, T. Sinisi, M. Catellani, L. Malpezzi, S. V.
Meille, and A. Mele, Chem. Commun., 2000, 1139.
a) K. Oyaizu, T. Mikami, F. Mitsuhashi, and E. Tsuchida,
Macromolecules, 35, 67 (2002). b) K. Oyaizu, T. Iwasaki,
Y. Tsukahara, and E. Tsuchida, Macromolecules, 37, 1257
(2004). c) E. Tsuchida and K. Oyaizu, Bull. Chem. Soc.
Jpn., 76, 15 (2003).
10 P. Pitchen, E. Dunach, and H. B. Kagan, J. Am. Chem. Soc.,
106, 8188 (1984).
20
20
11 4-(R): ½ꢁꢂ
+87ꢁ(c 1.00, CHCl3). 4-(S): ½ꢁꢂ
ꢃ84ꢁ (c
D
D
1.00, CHCl3).
12 E. Tsuchida and H. Nishide, Adv. Polym. Sci., 24, 1 (1977).
13 a) G. D. Staffin and C. C. Price, J. Am. Chem. Soc., 82, 3632
(1960). b) H. M. van-Dort, C. R. H. I. de-Jonge, and W. J.
Mijs, Polym. Sci., Part C, 22, 431 (1968). c) C. R. H. I.
de-Jonge, H. M. van-Dort, and L. Vollbracht, Tetrahedron
Lett., 11, 1881 (1970). d) A. S. Hay, H. S. Blanchard,
G. F. Endres, and J. W. Eutance, J. Am. Chem. Soc., 81,
6335 (1959). e) R. Ikeda, J. Sugihara, H. Uyama, and S.
Figure 1. UV–vis and CD spectra of 0.1 mM 6-(R) (solid line)
and 6-(S) (dashed line) CH3CN solution.
Kobayashi, Macromolecules, 29, 8702 (1996).
14 5-(R): Yield 72%. Mn ¼ 1800 (Mw=Mn ¼ 1:2). ½ꢁꢂ
20
D
In summary, a novel helical ladder polymer comprising of
fused phenoxathiine ring 6 was synthesized through the regiose-
lective intramolecular ring-closing of the pendant chiral sulfox-
ide in the poly(1,2-phenyleneoxide) derivative. The mechanism
of the helical formation with one-sided bias could be described
as follows (Scheme 1). The pendant chiral sulfoxide of 5 was
protonated by the superacid to generate the chiral hydroxy sulfo-
nium cation as an intermediate. The cation electrophilically at-
+128ꢁ (c 1.00, CHCl3). UV–vis (CH3CN, 0.1 mM):
ꢂmax ¼ 307 nm, ꢂshoulder ¼ 372 nm). 5-(S): Yield 77%.
20
Mn ¼ 1800 (Mw=Mn ¼ 1:2). ½ꢁꢂ
ꢃ124ꢁ (c 1.00, CHCl3).
D
15 6-(R) and 6-(S): Yield: 97%. 1H NMR (DMSO-d6, 500 MHz;
ppm): ꢃ 8.31 (s, 1H), 3.91 (s, 3H), 3.24 (s, 3H). IR (KBr,
cmꢃ1): 1268, 774 (ꢄC-F), 1259 (ꢄC-O-C), 1304, 1148 (ꢄSO ).
2
UV–vis (CH3CN, 0.1 mM): ꢂmax ¼ 321 nm, ꢂshoulder
¼
406 nm.
Published on the web (Advance View) December 25, 2004; DOI 10.1246/cl.2005.164