Molecules 2021, 26, 1382
22 of 24
27. Yokoyama, Y.; Sasaki, Y.; Terasaki, N.; Kawataki, T.; Takekawa, K.; Iwase, Y.; Shimizu, T.; Sanoh, S.; Ohta, S. Comparison of drug
metabolism and its related hepatotoxic effects in heparg, cryopreserved human hepatocytes, and hepg2 cell cultures. Biol. Pharm.
28. Daniel, A.; Premilovac, D.; Foa, L.; Feng, Z.; Shah, K.; Zhang, Q.; Woolley, K.; Bye, N.; Smith, J.; Gueven, N. Novel short-chain
quinones to treat vision loss in a rat model of diabetic retinopathy. Int. J. Mol. Sci. 2021, 22, 1016. [CrossRef]
29. Betts, R.L.; Murphy, S.T.; Johnson, C.R. Enzymatic desymmetrization/resolution of epoxydiols derived from 1,4-naphthoquinone,
5-hydroxy-1,4-naphthoquinone and 5,8-dihydroxy-1,4-naphthoquinone. Tetrahedron Asymmetry 2004, 15, 2853–2860. [CrossRef]
30. Giorgio, V.; Petronilli, V.; Ghelli, A.; Carelli, V.; Rugolo, M.; Lenaz, G.; Bernardi, P. The effects of idebenone on mitochondrial
bioenergetics. Biochim. Biophys. Acta Bioenerg. 2012, 1817, 363–369. [CrossRef] [PubMed]
31. Heiden, M.G.V.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation.
Science 2009, 324, 1029–1033. [CrossRef]
32. Stafstrom, C.E.; Rho, J.M. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front. Pharm. 2012, 3, 59.
33. Miller, V.J.; Villamena, F.A.; Volek, J.S. Nutritional ketosis and mitohormesis: Potential implications for mitochondrial function
and human health. J. Nutr. Metab. 2018, 2018, 1–27. [CrossRef]
34. Lei, D.; Shao, Z.; Zhou, X.; Yuan, H. Synergistic neuroprotective effect of rasagiline and idebenone against retinal ischemia-
reperfusion injury via the Lin28-let-7-Dicer pathway. Oncotarget 2018, 9, 12137–12153. [CrossRef]
35. Shyh-Chang, N.; Zhu, H.; de Soysa, T.Y.; Shinoda, G.; Seligson, M.T.; Tsanov, K.M.; Nguyen, L.; Asara, J.M.; Cantley, L.C.; Daley,
G.Q. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 2013, 155, 778–792. [CrossRef] [PubMed]
36. Zhang, M.; Niu, X.; Hu, J.; Yuan, Y.; Sun, S.; Wang, J.; Yu, W.; Wang, C.; Sun, N.; Wang, H. Lin28a protects against hy-
poxia/Reoxygenation induced cardiomyocytes apoptosis by alleviating mitochondrial dysfunction under high glucose/high fat
conditions. PLoS ONE 2014, 9, e110580. [CrossRef]
37. Docherty, C.K.; Salt, I.P.; Mercer, J.R. Lin28A induces energetic switching to glycolytic metabolism in human embryonic kidney
38. Leu, J.I.-J.; Barnoud, T.; Zhang, G.; Tian, T.; Wei, Z.; Herlyn, M.; Murphy, M.E.; George, D.L. Inhibition of stress-inducible HSP70
impairs mitochondrial proteostasis and function. Oncotarget 2017, 8, 45656–45669. [CrossRef] [PubMed]
39. Kawai, A.; Nishikawa, S.; Hirata, A.; Endo, T. Loss of the mitochondrial Hsp70 functions causes aggregation of mitochondria in
yeast cells. J. Cell Sci. 2001, 114, 3565–3574.
40. Stuart, R.A.; Cyr, D.M.; Neupert, W. Hsp70 in mitochondrial biogenesis: From chaperoning nascent polypeptide chains to
facilitation of protein degradation. Cell. Mol. Life Sci. 1994, 50, 1002–1011. [CrossRef]
41. Kang, P.-J.; Ostermann, J.; Shilling, J.; Neupert, W.; Craig, E.A.; Pfanner, N. Requirement for hsp70 in the mitochondrial matrix for
translocation and folding of precursor proteins. Nat. Cell Biol. 1990, 348, 137–143. [CrossRef] [PubMed]
42. Týcˇ, J.; Klingbeil, M.M.; Lukeš, J. Mitochondrial heat shock protein machinery hsp70/Hsp40 is indispensable for proper
mitochondrial dna maintenance and replication. mBio 2015, 6, e02425-14. [CrossRef]
43. Bellini, S.; Barutta, F.; Mastrocola, R.; Imperatore, L.; Bruno, G.; Gruden, G. Heat shock proteins in vascular diabetic complications:
Review and future perspective. Int. J. Mol. Sci. 2017, 18, 2709. [CrossRef]
44. Atalay, M.; Oksala, N.; Lappalainen, J.; Laaksonen, D.E.; Sen, C.K.; Roy, S. Heat shock proteins in diabetes and wound healing.
Curr. Protein Pept. Sci. 2009, 10, 85–95. [CrossRef]
45. Xu, L.; Nitika; Hasin, N.; Cuskelly, D.D.; Wolfgeher, D.; Doyle, S.; Moynagh, P.; Perrett, S.; Jones, G.W.; Truman, A.W. Rapid
deacetylation of yeast Hsp70 mediates the cellular response to heat stress. Sci. Rep. 2019, 9, 1–11. [CrossRef]
46. Xu, J.; Yin, B.; Huang, B.; Tang, S.; Zhang, X.; Sun, J.; Bao, E. Co-enzyme Q10 protects chicken hearts from in vivo heat stress via
inducing HSF1 binding activity and Hsp70 expression. Poult. Sci. 2019, 98, 1002–1011. [CrossRef] [PubMed]
47. Cockburn, I.L.; Boshoff, A.; Pesce, E.-R.; Blatch, G.L. Selective modulation of plasmodial Hsp70s by small molecules with
antimalarial activity. Biol. Chem. 2014, 395, 1353–1362. [CrossRef] [PubMed]
48. Walsh, M.E.; Bhattacharya, A.; Sataranatarajan, K.; Qaisar, R.; Sloane, L.B.; Rahman, M.M.; Kinter, M.; Van Remmen, H. The
histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell 2015, 14,
49. Valenzuela-Fernández, A.; Cabrero, J.R.; Serrador, J.M.; Sánchez-Madrid, F. HDAC6: A key regulator of cytoskeleton, cell
migration and cell–cell interactions. Trends Cell Biol. 2008, 18, 291–297. [CrossRef] [PubMed]
50. Guedes-Dias, P.; de Proença, J.; Soares, T.R.; Leitão-Rocha, A.; Pinho, B.R.; Duchen, M.R.; Oliveira, J.M. HDAC6 inhibition induces
mitochondrial fusion, autophagic flux and reduces diffuse mutant huntingtin in striatal neurons. Biochim. Biophys. Acta Mol. Basis
51. Galmozzi, A.; Mitro, N.; Valente, S.; Guerrini, U.; Caruso, D.; Mai, A.; Saez, E.; De Fabiani, E.; Crestani, M.; Ferrari, A.; et al.
Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle
and adipose tissue. Diabetes 2012, 62, 732–742. [CrossRef]
52. Guo, W.; Naujock, M.; Fumagalli, L.; Vandoorne, T.; Baatsen, P.; Boon, R.; Ordovás, L.; Patel, A.; Welters, M.; Vanwelden, T.; et al.
HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat. Commun. 2017, 8,