C O M M U N I C A T I O N S
Scheme 4. Completion of the Synthesisa
Acknowledgment. We are grateful to the NIH (GM 33049)
for their continued generous support of our programs. M.U.F thanks
GSK Research and Development Ltd. for partial postdoctoral
support. B.T.S. thanks the NIH for postdoctoral fellowship support.
Supporting Information Available: Experimental details and
characterization for all new compounds (PDF). This material is available
References
(1) Trost, B. M.; Fettes, A.; Shireman, B. T. J. Am. Chem. Soc. 2004, 126,
2660 and references therein to other direct asymmetric aldol reactions.
(2) Trost, B. M.; Machacek, M. R.; Ball, Z. T. Org. Lett. 2003, 5, 1895.
(3) (a) Tunac, J. B.; Graham, B. D.; Dobson, W. E. J. Antibiot. 1983, 36,
1595. (b) Stampwala, S. S.; Bunge, R. H.; Hurley, T. R.; Willmer, N. E.;
Brankiewicz, A. J.; Steinman, C. E.; Smitka, T. A.; French, J. C. J.
Antibiot. 1983, 36, 1601. (c) Hokanson, G. C.; French, J. C. J. Org. Chem.
1985, 50, 462.
a Reagents and conditions: (a) DDQ, CH2Cl2:H2O (10:1) (94%); (b) 23,
NaHCO3, MeOH, rt (53%, 72% brsm); (c) 4, Pd2(dba)3‚CHCl3 (5 mol %),
TBAF (4 equiv slow addition), THF, 0 °C to room temperature (54%).
(4) Jackson, R. C.; Fry, D. W.; Boritzki, T. J.; Roberts, B. J.; Hook, K. E.;
Leopold, W. R. AdV. Enzyme Reg. 1985, 23, 193.
of the corresponding magnesiate species16 of 11 afforded 19 as a
single diastereomer in very good yield (75%). The unsaturated
lactone moiety was installed by selective removal of the allylic
TES-group, followed by acylation with acrolyl chloride giving 20,
which was subsequently exposed to Grubbs first-generation catalyst,
yielding key intermediate 21 (83% over three steps).
(5) (a) Lewy, D. S.; Gauss, C. M.; Soenen, D. R.; Boger, D. L. Curr. Med.
Chem. 2002, 9, 2005. (b) de Jong, R. S.; Mulder, N. H.; Uges, D. R. A.;
Sleijfer, D. T.; Hoppener, F. J. P.; Groen, H. J. M.; Willemse, P. H. B.;
van der Graaf, W. T. A.; de Vries, E. G. E. Br. J. Cancer 1999, 79, 882.
(6) Boger, D. L.; Hikota, M.; Lewis, B. M. J. Org. Chem. 1997, 62, 1748.
(7) Boger, D. L.; Ichikawa, S.; Zhong, W. J. Am. Chem. Soc. 2001, 123,
4161.
(8) Buck, S. B.; Hardouin, C.; Ichikawa, S.; Soenen, D. R.; Gauss, C. M.;
Hwang, I.; Swingle, M. R.; Bonness, K. M.; Honkanen, R. E.; Boger, D.
L. J. Am. Chem. Soc. 2003, 125, 15694.
With an ample supply of 21 in hand, the stage was set for
examination of the final steps toward the target, fostriecin precursor,
tetraol 2. Thus, the acetal protecting group was removed by the
addition of DDQ, providing alkyne 22 in 94% yield (Scheme 4).
A cis reduction was required to install the vinyl silane. Attempts
to effect this transformation were hampered by either poor yield
and/or over-reduction. Eventually, using diimide precursor 2317
under mildly basic conditions afforded the cis-vinyl silane 24.
Finally the assembly of the triene unit called upon a Pd-catalyzed
vinyl silane cross-coupling reaction. The susceptibility of the
unsaturated lactone toward base complicated this cross-coupling.
After much experimentation, it was found that the sensitive triene
functionality could be assembled by adding TBAF slowly to a
combination of vinyl silane 24, vinyl iodide 4,18 and catalytic
amounts of Pd2(dba)3‚CHCl3 in THF. As expected, the cross-
coupling also led to concomitant deprotection of the silicon
protecting groups, giving the dephosphofostriecin 2 in good yield.
The conversion of 2 to fostriecin (1) has been demonstrated by
Boger.7
In conclusion, we have completed the synthesis of dephospho-
fostriecin 2, and thereby a formal synthesis of fostriecin 1, in 14
steps for the longest linear sequence and 8.5% overall yield. This
work illustrates for the first time the use of the direct asymmetric
Zn-catalyzed aldol reaction, and the utility of the corresponding
aldol adducts as building blocks for complex molecule synthesis.
It also exemplifies the extraordinary utility of the Pd-catalyzed vinyl
silane cross-coupling as an alternative to more mainstream Pd-
catalyzed cross-coupling reactions, in the synthesis of complex
molecules.
(9) (a) Chavez, D. E.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2001, 40, 3667.
(b) Reddy, Y. K.; Falck, J. R. Org. Lett. 2002, 4, 969. (c) Miyashita, K.;
Ikejiri, M.; Kawasaki, H.; Maemura, S.; Imanishi, T. Chem. Commun.
2002, 742. (d) Miyashita, K.; Ikejiri, M.; Kawasaki, H.; Maemura, S.;
Imanishi, T. J. Am. Chem. Soc. 2003, 125, 8238. (e) Wang, Y. G.;
Kobayashi, Y. Org. Lett. 2002, 4, 4615. (f) Esumi, T.; Okamoto, N.;
Hatakeyama, S. Chem. Commun. 2002, 3042. (g) Fujii, K.; Maki, K.;
Kanai, M.; Shibasaki, M. Org. Lett. 2003, 5, 733.
(10) (a) Just, G.; Oconnor, B. Tetrahedron Lett. 1988, 29, 753. (b) Liu, S. Y.;
Huang, D. F.; Huang, H. H.; Huang, L. Chin. Chem. Lett. 2000, 11, 957.
(c) Cossy, J.; Pradaux, F.; BouzBouz, S. Org. Lett. 2001, 3, 2233. (d)
Kiyotsuka, Y.; Igarashi, J.; Kobayashi, Y. Tetrahedron Lett. 2002, 43,
2725. (e) Marshall, J. A.; Bourbeau, M. P. Org. Lett. 2003, 5, 3197. (f)
Ramachandran, P. V.; Liu, H. P.; Reddy, M. V. R.; Brown, H. C. Org.
Lett. 2003, 5, 3755.
(11) For a review, see: Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002,
35, 835.
(12) Marek, I.; Meyer, C.; Normant, J. F. Org. Synth. 1997, 74, 194.
(13) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092.
(14) (a) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem.
Soc. 1997, 119, 8738. (b) Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya,
T.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 285.
(15) Kigoshi, H.; Suenaga, K.; Mutou, T.; Ishigaki, T.; Atsumi, T.; Ishiwata,
H.; Sakakura, A.; Ogawa, T.; Ojika, M.; Yamada, K. J. Org. Chem. 1996,
61, 5326.
(16) (a) Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. J. Org. Chem.
2001, 66, 4333. (b) Kitagawa, K.; Inoue, A.; Shinokubo, H.; Oshima, K.
Angew. Chem., Int. Ed. 2000, 39, 2481. (c) Knochel, P.; Dohle, W.;
Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu,
V. A. Angew. Chem., Int. Ed. 2003, 42, 4302.
(17) Cusack, N. J.; Reese, C. B.; Risius, A. C.; Roozpeikar, B. Tetrahedron
1976, 32, 2157.
(18) Vinyl iodide 4 was prepared from ester 9, via DIBAL-H reduction,
Horner-Wadsworth-Emmons reaction and subsequent DIBAL-H reduc-
tion, which afforded 4 in 33% overall yield, see Supporting Information
for more details.
JA042435I
9
J. AM. CHEM. SOC. VOL. 127, NO. 11, 2005 3667