S. Vargas et al. / Tetrahedron Letters 46 (2005) 2049–2052
2051
and xylyl (3h) have also been prepared.17 Most note-
worthy, the latter ligands produced amine 2a with signif-
icantly lower enantiomeric excesses than their ethane
counterparts 6f and h. Then, values of Dee in the three
couple of ligands investigated ranged from 23% to
45% ee indicating a general positive influence of the eth-
ane backbone.18
8. Blaser, H.-U.; Pugin, B.; Spindler, F. In Applied Homo-
geneous Catalysis with Organometallic Compounds; Corn-
ils, B., Herrmann, W. A., Eds.; Wiley-VCH: Weinheim,
2002; Vol. 3.
9. Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. Engl. 2001,
40, 3425.
10. (a) Nozaki, K.; Sakai, N.; Nanno, T.; Higashijima, T.;
Mano, S.; Horiuchi, T.; Takaya, H. J. Am. Chem. Soc.
1997, 119, 4413; (b) Nozaki, K.; Sato, N.; Tonomura, Y.;
Yasutomi, M.; Takaya, H.; Hiyama, T.; Matsubara, T.;
Koga, N. J. Am. Chem. Soc. 1997, 119, 12779; (c)
In conclusion, we have demonstrated that chiral phos-
phine–phosphites are appropriate ligands for the iridium
catalyzed asymmetric hydrogenation of imines. Ligand
optimization have led to efficient catalysts, as well as it
has identified the nature of the backbone as an impor-
tant variable in catalyst design. Studies regarding opti-
mization and scope of this catalytic system are
currently under progress.
`
´
Deerenberg, S.; Pamies, O.; Dieguez, M.; Claver, C.;
Kamer, P. C. J.; van Leeuwen, P. W. N. M. J. Org. Chem.
2001, 66, 7626; (d) Deerenberg, S.; Schrekker, H. S.; van
Strijdonck, G. P. F.; Kamer, P. C. J.; van Leeuwen, P. W.
N. M.; Fraanje, J.; Goubitz, K. J. Org. Chem. 2000, 65,
`
´
4810; (e) Pamies, O.; Dieguez, M.; Net, G.; Ruiz, A.;
Claver, C. J. Org. Chem. 2001, 66, 8364; (f) Blume, F.;
Zemolka, S.; Fey, T.; Kranich, R.; Schmalz, H.-G. Adv.
Synth. Catal. 2002, 344, 868; (g) Yan, Y.; Chi, Y.; Zhang,
X. Tetrahedron: Asymmetry 2004, 15, 2173; (h) Jia, X.; Li,
X.; Lam, W. S.; Kok, S. H. L.; Xu, L.; Lu, G.; Yeung,
C.-H.; Chan, A. S. C. Tetrahedron: Asymmetry 2004, 15,
2273.
Acknowledgments
´
We gratefully acknowledge Ministerio de Educacion y
Ciencia for financial support (BQU-2000-1167). S.G.
and M.R. thank CSIC (I3P Program) and Ministerio
´
de Educacion y Ciencia (FPU Program), respectively,
for fellowships.
´
11. (a) Suarez, A.; Pizzano, A. Tetrahedron: Asymmetry 2001,
12, 2501; (b) Suarez, A.; Mendez-Rojas, M. A.; Pizzano,
´
´
´
A. Organometallics 2002, 21, 4611; (c) Rubio, M.; Suarez,
A.; Alvarez, E.; Pizzano, A. Chem. Commun. 2005, 628.
12. General procedure for asymmetric hydrogenation. To a
solution of [Ir(Cl)(COD)]2 (3 mg, 0.004 mmol) in CH2Cl2
(1 mL) was added 6a (6 mg, 0.009 mmol) dissolved in
CH2Cl2 (1 mL). The mixture was stirred for 15 min and
added to a solution of imine 1a (174 mg, 0.9 mmol) in
CH2Cl2 (8 mL). The mixture was transferred to an
autoclave, purged three times with hydrogen and finally
pressurized at 30 bar. The reaction was stirred for 24 h,
reactor was depressurized and resulting solution evapo-
rated to dryness. The residue was redissolved in a
hexanes–ethyl acetate mixture (1:1) and passed through
a short pad of silica. Evaporation of solvent yielded amine
2a in quantitative yield. Enantiomeric excess was deter-
mined by chiral HPLC (Chiralcel OJ, 30 °C, hexane–
PriOH (97:3), flow 1.0 mL/min, t1 = 15.1 min (S),
t2 = 16.9 min (R)).
References and notes
1. Comprehensive Asymmetric Catalysis; Jacobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999;
Vol. 1.
2. (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029; (b)
Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner,
H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103.
3. (a) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc.
1994, 116, 8952; (b) Lensink, C.; deVries, J. G. Tetra-
hedron: Asymmetry 1992, 3, 235; (c) Bakos, J.; Orosz, A.;
Heil, B.; Laghmari, M.; Lhoste, P.; Sinou, D. Chem.
Commun. 1991, 1684.
4. (a) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc.
1994, 116, 11703; (b) Wang, W.-B.; Lu, S.-M.; Yang,
P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc. 2003,
125, 10536; (c) Bianchini, C.; Barbaro, P.; Scapacci, G.;
Farnetti, E.; Graziani, M. Organometallics 1998, 17, 3308;
13. As ligands 3 are considerably poor donor than diphos-
phines, this observation emphasizes that it is possible to
get active iridium catalysts with P–P ligands possessing
broad electronic properties. Accordingly, there have
appeared reports on the literature of catalysts bearing
from electron rich diphosphines9 to poor donating
(d) Ringwald, M.; Sturmer, R.; Brintzinger, H. H. J. Am.
¨
Chem. Soc. 1999, 121, 1524.
´
diphosphites, see: Guiu, E.; Mun˜oz, B.; Castillon, S.;
Claver, C. Adv. Synth. Catal. 2003, 345, 169.
5. (a) Blaser, H.-U. Adv. Synth. Catal. 2002, 344, 17; (b)
Blaser, H.-U.; Spindler, F. Top. Catal. 1997, 4, 275.
6. (a) Cobley, C. J.; Henschke, J. P. Adv. Synth. Catal. 2003,
14. Chantreux, D.; Gamet, J.-P.; Jacquier, R.; Verducci, J.
Tetrahedron 1984, 40, 3087.
345, 195; (b) Dorta, R.; Broggini, D.; Stoop, R.; Ruegger,
¨
H.; Spindler, F.; Togni, A. Chem. Eur. J. 2004, 10, 267; (c)
15. Representative procedure for the synthesis of ligands. Over
a solution of 5 (0.354 g, 0.84 mmol) and NEt3 (0.24 mL,
1.68 mmol) in toluene (30;mL) was added a solution of 2-
(diphenylphosphino)ethanol (0.195 g, 0.84 mmol) in tolu-
ene (20 mL). The reaction was stirred for 12 h and the
resulting suspension filtered. The solvent was evaporated,
the residue redissolved in Et2O and filtered through neutral
alumina. Evaporation of the solution obtained led to
compound 6a as a white foamy solid (0.34 g, 70%).
´ ˆ
Schnider, P.; Koch, G.; Pretot, R.; Wang, G.; Bohnen, F.
M.; Kruger, C.; Pfaltz, A. Chem. Eur. J. 1997, 3, 887; (d)
¨
Blanc, C.; Agbossou-Niedercorn, F.; Nowogrocki, G.
Tetrahedron: Asymmetry 2004, 15, 2159; (e) Trifonova, A.;
Diesen, J. S.; Chapman, C. J.; Andersson, P. G. Org. Lett.
2004, 6, 3825; (f) Maire, P.; Deblon, S.; Breher, F.; Geier,
J.; Bo¨hler, C.; Ruegger, H.; Scho¨nberg, H.; Grutzmacher,
¨
H. Chem. Eur. J. 2004, 10, 4198.
¨
D
7. The racemization of a N-aryl amine by an Ir C–H
activation has recently been demonstrated. This transfor-
mation would difficult the achievement of high enantiose-
lectivities in the hydrogenation of N-aryl imines. See:
Dorta, R.; Broggini, D.; Kissner, R.; Togni, A. Chem. Eur.
J. 2004, 10, 4546.
½aꢀ20 117 (c 1.0, THF). 1H NMR (CDCl3, 300 MHz): d
1.37 (s, 9H, CMe3), 1.47 (s, 9H, CMe3), 1.77 (s, 6H, 2Me),
2.19 (s, 3H, Me), 2.26 (s, 3H, Me), 2.29–2.36 (m, 2H,
2CHH), 3.36 (m, 1H, CHH), 3.92 (m, 1H, CHH), 7.04 (s,
1H, H arom), 7.07 (s, 1H, H arom), 7.30 (m, 10H, H arom).
31P{1H} NMR (CDCl3, 121.5 MHz): d ꢁ24.4 (s, PC), 128.9