Edge Article
Chemical Science
´
unlikely, raising the prospect that uorination occurs by direct
C40–H activation. One hypothesis would involve a C40-centred
oxocarbenium ion which is attacked by uoride ion. Within the
biosynthetic gene cluster are a number of genes encoding
enzymes of unknown function and also a gene (nucJ) predicted
to encode a radical SAM/iron–sulfur (Fe–S) cluster enzyme
which may have the capacity to achieve such a two electron
oxidation.
6 L. Ma, A. Bartholome, M. H. Tong, Z. Qin, Y. Yu, T. Shepherd,
K. Kyeremeh, H. Deng and D. O'Hagan, Chem. Sci., 2015, 6,
1414–1419.
7 (a) D. O Hagan, C. Schaffrath, S. L Cobb, J. T. G. Hamilton
and C. D Murphy, Nature, 2002, 416, 279; (b) C. Dong,
F. L. Huang, H. Deng, C. Schaffrath, J. B. Spencer,
D. O'Hagan and J. H. Naismith, Nature, 2004, 427, 561–565.
8 H. Deng, S. M. Cross, R. P. McGlinchey, J. T. G. Hamilton and
D. O'Hagan, Chem. Biol., 2008, 15, 1268–1276.
9 (a) X. M. Zhu, S. Hackl, M. N. Thaker, L. Kalan, C. Weber,
D. S. Urgast, E. M. Krupp, A. Brewer, S. Vanner,
A. Szawiola, G. Yim, J. Feldmann, A. Bechthold,
G. D. Wright and D. L. Zechel, ChemBioChem, 2015, 16,
2498–2506; (b) L. Kalan, A. Gessner, M. N. Thaker,
N. Waglechner, X.-M. Zhu, A. Szawiola, A. Bechthold,
G. D. Wright and D. L. Zechel, Chem. Biol., 2013, 20, 1214–
1224.
Conclusions
We have identied two novel uorometabolites (F-Met I and F-
Met II), which are 30-O-glucosylated, 40-uoro-riboadenosines
from S. calvus. The products of two genes (nucGS and nucGT)
identied in the putative nucleocidin gene cluster were over-
expressed and the corresponding proteins have the ability to
glucosylate (NucGT) and deglucosylate (NucGS) these two uo-
rometabolites at the 30-hydroxyl group of the ribose ring. In the
case of F-Met II, deglucosyaltion generates nucleocidin 1. These
observations support a role for F-Met I and F-Met II in the
biosynthesis of nucleocidin. The identity of these metabolites is
highly suggestive that one is a product of the unknown uori-
nation enzyme in S. calvus, and should provide a greater focus
In efforts to identify this interesting enzyme.
10 S. Zhang, D. Klementz, J. Zhu, R. Makirtynskyy,
¨
A. R. O. Pasternak, S. Gunther, D. L. Zechel and
A. Bechthold, J. Biotechnol., 2019, 292, 23–31.
´
11 (a) X. Feng, N. Al Maharik, A. Bartholome, J. E. Janso,
U. Reilly and D. O'Hagan, Org. Biomol. Chem., 2017, 15,
´
8006–8008; (b) A. Bartholome, J. E. Janso, U. Reilly and
D. O'Hagan, Org. Biomol. Chem., 2017, 15, 61–64.
12 H. Kristinsson, K. Nebel, A. C. O'Sullivan, J. P. Pachlatko,
and Y. Yamaguchi, ACS Symposium Series, Synthesis and
Chemistry of Agrochemicals IV, 1995, pp. 206–219.
13 C. Zhao, J. Qi, W. Tao, L. He, W. Xu, J. Chen and Z. Deng,
PLoS One, 2014, 9, e114722.
Conflicts of interest
The authors declare no conicts of interest.
14 Whole Genome Shotgun data for S. calvus T-3018 has been
deposited at DDBJ/ENA/GenBank under the accession
VCNP01000000.
15 H. Liu and J. H. Naismith, Protein Expression Purif., 2009, 63,
102–111.
16 P. Mujumdar, S. Bua, C. T. Supuran, T. S. Peat and
S.-A. Poulsen, Bioorg. Med. Chem. Lett., 2018, 28, 3009–3013.
17 L. L. Lairson, B. Henrissat, G. J. Davies and S. G. Withers,
Annu. Rev. Biochem., 2008, 77, 521–555.
Acknowledgements
We thank the EPSRC Catalysis HUB (University of Manchester)
for nancial support. We also thank Roger Howard, Usa Reilly,
Jeffery Janso and Alessandra Eustaquio at the Biocatalysis
Technologies Laboratory, Pzer, Groton, USA, for nancial
support, a producing strain of S. calvus, and supporting the
research with genome sequencing.
Notes and references
18 F. Egami and N. Takahashi, Bull. Chem. Soc. Jpn., 1955, 28,
666–668.
1 D. O'Hagan and H. Deng, Chem. Rev., 2015, 115, 634–649.
2 S. O. Thomas, V. L. Singleton, J. A. Lowery, R. W. Sharpe,
L. M. Pruess, J. N. Porter, J. H. Mowat and N. Bohonos,
Antibiot. Annu., 1956, 1956–1957.
3 (a) K. Isono, M. Uramoto, H. Kusakabe, N. Miyata and
T. Koyama, J. Antibiot., 1984, 37, 670–672; (b) E. Takahashi
and T. Beppu, Biochem. J., 1982, 233, 459–463.
4 M. Sanada, T. Miyano, S. Iwadare, J. M. Williamson,
B. H. Arison, J. L. Smith, A. W. Douglas, J. M. Leich and
E. Inamine, J. Antibiot., 1986, 39, 259–265.
5 H. Deng, L. Ma, N. Bandaranayaka, Z. Qin, G. Mann,
K. Kyeremeh, Y. Yu, T. Shephers, J. H. Naismith and
D. O'Hagan, ChemBioChem, 2014, 15, 364–368.
19 B. J. Beahm, K. W. Dehnert, N. L. Derr, J. Kuhn,
J. K. Eberhart, D. Spillmann, S. L. Amacher and
C. R. Bertozzi, Angew. Chem., Int. Ed., 2014, 53, 3347–3352.
20 W. Pilgrim and P. V. Murphy, J. Org. Chem., 2010, 75, 6747–
6755.
21 H. Kristinsson, K. Nebel, A. C. O'Sullivan, F. Struber,
T. Winkler and Y. Yamaguchi, Tetrahedron, 1994, 50, 6825–
6838.
22 (a) S. Lee, C. Uttamapinant and G. L. Verdine, Org. Lett.,
2007, 9, 5007–5009; (b) D. Guillerm, M. Muzard, B. Allart
and G. Guillerm, Bioorg. Med. Chem. Lett., 1995, 5, 1455.
This journal is © The Royal Society of Chemistry 2019
Chem. Sci.