C O M M U N I C A T I O N S
Table 2. Reactions of R-Alkenoyl Ketene-(S,S)-Acetals 1 with Nitroalkanes 2
R
-Alkenoyl Ketene-(S,S)-Acetals
Nitroalkanes
R4
Cyclohexenones
entrya
phenols 4
yield (%)c
1
R1
R2
R3
2
3
yield (%)c
entryb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4a
4b
4c
4d
4e
4f
4g
4h
4i
4j
4k
4l
4m
4n
67
72
80
76
82
75
64
72
79
56
77
65
78
52
1a
1b
1c
1d
1e
1f
1g
1h
1i
1j
1k
1l
1a
1a
Et
Et
Et
Et
Et
Et
Et
Et
Et
Et
Me
n-Bu
Et
4-ClC6H4NHCO
4-ClC6H4NHCO
4-ClC6H4NHCO
4-ClC6H4NHCO
4-ClC6H4NHCO
4-ClC6H4NHCO
4-ClC6H4NHCO
2-MeC6H4NHCO
PhCO
4-CH3C6H4
3,4-O2CH2C6H3
4-ClC6H4
4-FC6H4
2-thienyl
2a
2a
2a
2a
2a
2a
2a
2a
2a
2a
2a
2a
2b
2c
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Et
3a
3b
3c
3d
3e
3f
3g
3h
3i
3j
3k
3l
5m
5n
88
86
91
90
93
88
82
85
90
78
93
86
95
83
1′
2′
3′
4′
5′
6′
7′
8′
9′
10′
11′
12′
13′
14′
2-furyl
PhCHdCH
4-CH3C6H4
4-CH3C6H4
PhCHdCH
4-CH3C6H4
4-CH3C6H4
4-CH3C6H4
4-CH3C6H4
PhCO
4-ClC6H4NHCO
4-ClC6H4NHCO
4-ClC6H4NHCO
4-ClC6H4NHCO
Et
COOEt
a Reagents and conditions: DBU (1.5 equiv), r.t. to ∼70 °C, 1.0-1.5 h, DMF. b Reagents and conditions: DBU (1.0 equiv), r.t., 0.5-1.0 h, DMF.
c Isolated yields.
Scheme 2. Proposed Mechanism for the [5 + 1] Annulation
enones. The simplicity of execution, ready availability of substrates,
and broad range of potential products make this synthetic strategy
most attractive for academic research and practical applications.
Acknowledgment. Financial support of this research was
provided by the NNSFC (20272008) and the Key Grant Project of
Chinese Ministry of Education (10412).
results exhibit the scope and generality of the novel benzannulation
reaction with respect to a range of aliphatic and aromatic substrates.
Indeed, the protocol provides a straightforward pathway to construct
highly substituted phenols. Moreover, some other characteristics
of this reaction are noteworthy. It describes a new route to
asymmetric biaryls (e.g., in entries 1-4), which are generally
prepared via metal-catalyzed crossing-coupling reactions.15 The
reasonable result obtained for 4g and 4j illustrates the potential of
this reaction for the synthesis of configuration-locked hydroxylated
stilbenes, which are widely represented in nature and have become
of particular interest to scientists because of their wide range of
biological activity.16
In the next studies, a range of reactions with the same substrates
(1 and 2) as described above were performed with 1 equimolar
DBU at room temperature for a relatively short time (0.5-1 h).
The results are summarized in Table 2 (entries 1′-14′). To our
delight, the corresponding cyclohexenones 3 were obtained in high
yields in most cases (entries 1′-12′). Actually, substituted cyclo-
hexenones are also an important kind of organic molecule present
in numerous natural products along with bio- and pharmacological
activities. Therefore, we present a [5C + 1C] strategy for the
synthesis of such useful compounds.17 Interestingly, Michael
addition adducts 5m and 5n were obtained in cases 2b and 2c
(entries 13′ and 14′). This result provides the evidence for the
mechanism of the annulation reaction.
Supporting Information Available: Experimental details and
spectral data for 1a-l, 4a-n, 3a-l, 5m, and 5n. This material is
References
(1) (a) Modern Arene Chemistry; Astruc, D., Ed., Wiley-VCH: Weinheim,
Germany, 2002. (b) The Chemistry of Phenols; Rappoport, Z., Ed., Wiley-
VCH: New York, 2003.
(2) Do¨tz, K. H.; Tomuschat, P. Chem. Soc. ReV. 1999, 28, 187.
(3) (a) Danheiser, R. L.; Gee, S. K. J. Org. Chem. 1984, 49, 1672. (b)
Danheiser, R. L.; Brisbois, R. G.; Kowalczyk, J. J.; Miller, R. F. J. Am.
Chem. Soc. 1990, 112, 3093.
(4) (a) Xi, Z.; Sato, K.; Gao, Y.; Lu, J.; Takahashi, T. J. Am. Chem. Soc.
2003, 125, 9568. (b) Takahashi, T.; Ishikawa, M.; Huo, S. J. Am. Chem.
Soc. 2002, 124, 388 and reference therein.
(5) Saito, S.; Yamamoto, Y. Chem. ReV. 2000, 100, 2901.
(6) (a) Langer, P.; Bose, G. Angew. Chem., Int. Ed. 2003, 42, 4033. (b)
Katritzky, A. R.; Li, J.; Xie, L. Tetrahedron 1999, 55, 8263.
(7) (a) Serra, S.; Fuganti, C.; Moro, A. J. Org. Chem. 2001, 66, 7883. (b)
Turnbull, P.; Moore, H. W. J. Org. Chem. 1995, 60, 644.
(8) (a) Smith, A. B., III; Kozmin, S. A.; Adams, C. M.; Paone, D. V. J. Am.
Chem. Soc. 2000, 122, 4984. (b) Dudley, G. B.; Takaki, K. S.; Cha, D.
D.; Danheiser, R. L. Org. Lett. 2000, 2, 3407.
(9) Wulff, W. D.; Tang, P.-C.; McCallum, J. S. J. Am. Chem. Soc. 1981,
103, 7677.
(10) Reviews: (a) Dieter, R. K. Tetrahedron 1986, 42, 3029. (b) Junjappa,
H.; Ila, H.; Asokan, C. V. Tetrahedron 1990, 46, 5423.
(11) (a) Kocienski, P. J.; Pontiroli, A.; Liu, Q. J. Chem. Soc., Perkin Trans. 1
2001, 2356. (b) Ila, H.; Junjappa, H.; Barun, O. J. Organomet. Chem.
2001, 624, 34. (c) Datta, A.; Ila, H.; Junjappa, H. Tetrahedron Lett. 1988,
29, 497.
(12) Barun, O.; Nandi, S.; Panda, K.; Ila, H.; Junjappa, H. J. Org. Chem. 2002,
67, 5398.
(13) Selected examples: (a) Wang, M.; Xu, X.; Liu, Q.; Xiong, L.; Yang, B.;
Gao, L. Synth. Commun. 2002, 32 (22), 3437. (b) Bi, X.; Liu, Q.; Sun,
S.; Liu, J.; Pan, W.; Zhao, L.; Dong, D. Synlett 2005, 1, 49.
(14) Ono, N. In The Nitro Group in Organic Synthesis; Feuer, H., Ed.; Wiley-
VCH: New York, 2001; p 182.
(15) Anastasia, L.; Negishi, E. In Handbook of Organopalladium Chemistry
for Organic Synthesis; Negishi, E., Ed.; Wiley: New York, 2002; p 311.
(16) (a) Belofsky, G.; French, A. N.; Wallace, D. R.; Dodson, S. L. J. Nat.
Prod. 2004, 67, 26. (b) Dogan, Z.; Paulini, R.; Rojas Stu¨tz, J. A.;
Narayanan, S.; Richert, C. J. Am. Chem. Soc. 2004, 126, 4762.
(17) Selected synthetic methods for cyclohexenones: (a) Lee, S. I.; Park, J.
H.; Chung, Y. K.; Lee, S.-G. J. Am. Chem. Soc. 2004, 126, 2714. (b)
Tanaka, K.; Fu, G. C. Org. Lett. 2002, 4, 933. (c) Taber, D. F.; Kanai,
K.; Jiang, Q.; Bui, G. J. Am. Chem. Soc. 2000, 122, 6807.
On the basis of all of the above results, a possible mechanism
for annulation of 1 and 2 is proposed as shown in Scheme 2. The
anion of nitroalkanes first adds to the double bond bearing an aryl
group, followed by an intramolecular addition-elimination (SNV)
reaction to afford a cyclohexenone of type 3, which sheds HNO2
and is then aromatized to furnish a target product of type 4.
In summary, a novel [5 + 1] annulation strategy is developed
for the synthesis of highly functionalized phenols and cyclohex-
JA043023C
9
J. AM. CHEM. SOC. VOL. 127, NO. 13, 2005 4579