J. J. R. de Freitas et al. / Tetrahedron Letters 48 (2007) 6195–6198
6197
stirred in a 150 mL round-bottom flask under nitrogen
atmosphere. Dicyclohexylcarbodiimide (DCC) (27.0
mmol) was added to it and the stirring continued for 3 h
at rt to give O-levulinylarylamidoximes (3a–e,g,i,l). Fil-
tration to remove DCU and solvent evaporation left an
oil, which was heated in an oil bath at 78 °C for 18 h. After
the reaction, the impure product was chromatographed
over a silica gel column employing n-hexane–ethyl acetate
(9:1) as an eluent. The fractions containg the right Rf
values of the compound were combined and the sol-
vent was evaporated to get chromatographically pure
4-[3-(aryl)-1,2,4-oxadiazol-5-yl]-butan-2-ones (5a–e,g,i,l).
Microwave method: A mixture of methyl levulinate 4
(1.0 mmol), appropriate arylamidoximes 1a–l (1.58 mmol)
and K2CO3 (0.85 mmol) was well triturated and placed in
a small glass test tube followed by irradiation in a
domestic microwave oven (100% potency, 650 W) for
10 min and then cooled. After the reaction, the compound
was chromatographed over a silica gel column and eluted
with n-hexane–ethyl acetate (9:1). The fractions containing
the desired compound were combined and the solvent
evaporated to get chromatographically pure 4-[3-(aryl)-
1,2,4-oxadiazol-5-yl]-butan-2-ones (5a–l).
support. One of us (J.J.R.F.) is thankful to Programa
´
Institucional de Bolsas de Iniciac¸ao Cientıfica (PIBIC)/
˜
CNPq.
References and notes
1. Clapp, L. B. In Advance in Heterocyclic Chemistry;
Katritzky, A. R., Ed.; Academic Press: New York, NY,
1976; Vol. 20, pp 65–116.
2. Clapp, L. B. In Comprehensive Heterocyclic Chemistry;
Katritzky, A. R., Rees, C. W., Eds.; Pergaman Press:
London, 1984; Vol. 6, pp 365–391.
3. Jochims, J. C. In Comprehensive Heterocyclic Chemistry,
II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.;
Elsevier Science, 1996; Vol. 4, pp 179–228.
4. Hemming, K. J. Chem. Res. 2001, 216, 209–216.
5. (a) Macer, J. E.; Ordway, T.; Smith, R. L.; Verhoest, P.
R.; Mack, R. A. J. Org. Chem. 1996, 61, 3228–3229; (b)
Chen, C.; Senanayake, C. H.; Bill, T. J.; Larsen, R. D.;
Verhoeven, T. R.; Reider, P. J. J. Org. Chem. 1994, 59,
3738–3741; (c) Diana, G. D.; Volkots, D. L.; Nitz, T. J.;
Bailey, T. R.; Long, M. A.; Niranjan, V.; Aldous, S.;
Pevear, D. C.; Dutko, F. J. J. Med. Chem. 1994, 37, 2421–
2436; (d) Tully, W. R.; Gardner, C. R.; Gillespie, R. J.;
Westwood, R. J. J. Med. Chem. 1991, 34, 2060–2067; (e)
Street, L. J.; Baker, R.; Book, T.; Kneen, C. O.; MacLeod,
A. M.; Merchant, K. J.; Showell, G. A.; Saunders, J.;
Herbert, R. H.; Freedman, S. B.; Harley, E. A. J. Med.
Chem. 1990, 33, 2690–2697.
6. Andersen, K. E.; Lundt, B. F.; Joergensen, A. S.;
Branstrup, C. Eur. J. Med. Chem. 1996, 31, 417–425.
7. Lima, L. M.; Barreiro, F. J. Curr. Med. Chem. 2005, 12,
23–49.
8. Borg, S.; Volling, R. C.; Labarre, M.; Payza, K.; Teenius,
L.; luthanan, K. J. Med. Chem. 1999, 42, 4331–4342.
9. (a) Miranda Bezerra, N. M.; De Oliveira, S. P.; Srivastava,
R. M.; da Silva, J. R. Fa´rmaco 2005, 60, 955–960; (b)
Srivastava, R. M.; Seabra, G. M. J. Braz. Chem. Soc.
1997, 8, 397–405; (c) Afiatpour, P.; Srivastava, R. M.; de
Oliveira, M. L.; Barreiro, E. J. Braz. J. Med. Biol. Res.
1994, 27, 1403–1406; (d) Antunes, R.; Srivastava, R. M.
Heterocycl. Commun. 1996, 2, 247–250.
10. Pibiri, I.; Pace, A.; Buscemi, S.; Vivona, N.; Malpezzi, L.
Heterocycles 2006, 68, 307–321.
11. Pibiri, I.; Pace, A.; Piccionello, A. P.; Pierroˆ, P.; Buscemi,
S. Heterocycles 2006, 68, 2653–2661.
12. Shiou, S.; Shine, H. J. J. Heterocycl. Chem. 1989, 26, 125–
128.
13. Gangloff, A. R.; Litvak, J.; Shelton, E. J.; Sperandio, D.;
Wang, V. R.; Rice, K. D. Tetrahedron Lett. 2001, 42,
1441–1443, and references quoted in the article.
14. Katritzky, A. R.; Shestopalov, A. A.; Suzuki, K. ARKI-
VOK 2005, 7, 36–55, and references cited therein.
15. Amarasinghe, K. K. D.; Maier, M. B.; Srivastava, A.;
Gray, J. L. Tetrahedron Lett. 2006, 47, 3629–3631.
16. Microwave reactions were performed in a domestic
microwave oven, SANYO, model EM-300B (220 V;
650 W/2450 MHz). The precise heating area in the oven
was located, and the experiments were repeated at least a
couple of times. Therefore, we feel confident that these
experiments can be repeated by any chemist.
17. Du, W.; Truong, Q.; Qi, H.; Guo, Y.; Chobanion, H. R.;
Hagmann, W. H.; Hale, J. J. Tetrahedron Lett. 2007, 48,
2231–2235.
18. Synthesis of 4-[3-(aryl)-1,2,4-oxadiazol-5-yl]-butan-2-ones
(5a–e,g,i,l).Conventional method: A mixture of levulinic
acid 2 (28.0 mmol) and appropriate arylamidoxime 1a, g,
i, l (27.0 mmol) in dry dichloromethane (50 mL) was
19. Compound 4-(3-phenyl-1,2,4-oxadiazol-5-yl)-butan-2-one
(5a): Pale yellow oil, yield 93%. IR (KBr): 1720; 1590;
1570; 1360; 1160; 720 cmꢀ1. 1H NMR (300 MHz, CDCl3):
d 8.07–8.02 (m, 2H, H-20 and H-60, Ph-H), 7.50–7.43 (m,
3H, H-30, H-40 and H-50, Ph-H), 3.23–3.18 (ddd, 2H,
J = 1.5 Hz, J = 6.7 Hz, J = 14.3 Hz, H-6 and H-60), 3.09–
3.04 (ddd, 2H, J = 1.5 Hz, J = 6.6 Hz, J = 14.7 Hz, H-7
and H-70), 2.26 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3):
d 205.6 (C-8); 179.2 (C-3); 170 (C-5); 131.5 (C-100); 129.5
(C-300 and C-500); 129.1 (C-400); 127.7 (C-200 and C-600); 39.6
(C-6); 30.25 (C-7); 21.1 (CH3). Anal. Calcd for
C12H12O2N2: C, 66.66; H, 5.55; N, 12.95. Found: C,
66.51; H, 5.62; N, 12.74.
Compound 4-(3-o-tolyl-1,2,4-oxadiazol-5-yl)-butan-2-one
(5b): Pale yellow oil, yield 90%. IR (KBr): 1710; 1590;
1565; 1360; 1335; 1160; 740 cmꢀ1 1H NMR (300 MHz,
.
CDCl3): d 7.92 (d, J = 7.2 Hz, 1H, Ph-H), 7.38–7.25 (m,
3H, Ph-H), 3.20 (t, 2H, J = 6.96 Hz, H-6 and H-60), 3.04
(t, 2H, J = 6.78 Hz, H-7 and H-70),2.59 (s, 3H, Ph–CH3),
2.22 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3): d 205.7
(C-8); 178.1 (C-3); 169.1 (C-5); 138.5 (C-100); 131.7 (C-300);
126.4 (C-500); 130.8 (C-200); 130.3 (C-400); 126.4 (C-600); 39.5
(C-7); 30.25 (C-6); 20.9 (CH3); 14.5 (Ph–CH3). Anal.
Calcd for C13H14O2N2: C, 67.81; H, 6.13; N, 12.17.
Found: C, 67.83; H, 6.49; N, 12.06.
Compound 4-(3-m-tolyl-1,2,4-oxadiazol-5-yl)-butan-2-one
(5c): Pale yellow oil, yield 89%. IR (KBr): 1720; 1595;
1575; 1350; 1150; 745 cmꢀ1. 1H NMR (300 MHz, CDCl3):
d 7.82–7.79 (m, 2H, Ph-H), 7.32–7.23 (m, 2H, Ph-H), 3.15
(dd, 2H, J = 1.3 Hz, J = 7.5 Hz, H-6 and H-60), 3.00 (d,
2H, J = 6.78 Hz, H-7 and H-70), 2.35 (s, 3H, Ph–CH3),
2.18 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3): d 205.7
(C-8); 179.2 (C-3); 1.68.6 (C-5); 138.9 (C-100); 129 (C-200);
129.3 (C-500); 128.8 (C-400); 132.2 (C-300); 124.8 (C-600); 39.5
(C-7); 30.0 (C-6); 21.6 (CH3); 14.1 (Ph–CH3). Anal. Calcd
for C13H14O2N2.1/2H2O: C, 65.24; H, 6.27; N, 11.71.
Found: C, 65.83; H, 6.03; N, 11.61.
Compound 4-(3-p-tolyl-1,2,4-oxadiazol-5-yl)-butan-2-one
(5d): Pale yellow oil, yield 92%. IR (KBr): 1720; 1590;
1565; 1350; 1120; 740 cm1. 1H NMR (300 MHz, CDCl3): d
7.94 (d, J = 8.1 Hz, 2H, H-200 and H-600), 7.27 (d,
J = 7.8 Hz, 2H, H-300 and H-500), 3.18 (dt, 2H, J =
1.3 Hz, J 8.1 Hz, H-6 and H-60), 3.05 (dt, 2H, J =
1.3 Hz, J = 8.1 Hz, H-7 and H-70), 2.39 (s, 3H, Ph–
CH3), 2.24 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3): d
205.7 (C-8); 179.0 (C-3); 168.5 (C-5); 141.8 (C-100); 129.8