5524
C. J. Helal et al. / Bioorg. Med. Chem. Lett. 14 (2004) 5521–5525
Table 4. SAR of aryl/heteroaryl ureas
plified by 32. SAR patterns that emerged are (1) potency
and selectivity are increased by the emplacement
of fused heteroaryl rings in both acetamides and ureas
off of the 2-amino position and (2) a small lipophilic
pocket appears to exist in cdk5 near the thiazole 5-posi-
tion, with cyclobutyl providing optimal enzyme inter-
actions. These insights will be useful in further
chemistry efforts.
Compd
Ar
cdk5 IC50
(nM)
cdk2 IC50
(nM)
Select
(k2/k5)
25
26
183 89
44 11
290 50
167 27
1.6
3.8
References and notes
1. Nugiel, D. A.; Vidwans, A.; Etxkorn, A.-M.; Rossi, K. A.;
Benfield, P. A.; Burton, C. R.; Cox, S.; Doleniak, D.;
Seitz, S. J. Med. Chem. 2002, 45, 5224, and references cited
therein.
2. Lau, L.-F.; Schachter, J. B.; Seymour, P. A.; Sanner, M.
A. Curr. Topics Med. Chem. 2002, 2, 395.
27
28
44
13
1
1
176 37
4.0
3.3
43
4
3. Lau, L.-F.; Seymour, P. A.; Sanner, M. A.; Schachter, J.
B. J. Mol. Neurosci. 2002, 19, 267.
29
30
8
5
1
2
96 12
12.0
11.0
4. For recent articles describing 2-aminothiazole inhibitors
of cdk2 see: (a) Kim, K. S.; Kimball, S. D.; Misra, R. N.;
Rawlins, D. B.; Hunt, J. T.; Xiao, H.-Y.; Lu, S.; Qian, L.;
Han, W.-C.; Shan, W.; Mitt, T.; Cai, Z.-W.; Poss, M. A.;
Zhu, H.; Sack, J. S.; Tokarski, J. S.; Chang, C.-Y.;
Pavletich, N.; Kamath, A.; Humphreys, W. G.; Marathe,
P.; Bursuker, I.; Kellar, K. A.; Roongta, U.; Batorsky, R.;
Mulheron, J. G.; Bol, D.; Fairchild, C.; Lee, F. Y.;
Webster, K. R. J. Med. Chem. 2002, 45, 3905; (b) Misra,
R. N.; Xiao, H.-Y.; Kim, K. S.; Lu, S.; Han, W.-C.;
Barbosa, S. A.; Hunt, J. T.; Rawlins, D. B.; Shan, W.;
Ahmed, S. Z.; Qian, L.; Chen, B.-C.; Zhao, R.; Bednarz,
M. S.; Kellar, K. A.; Mulheron, J. G.; Batorsky, R.;
Roongta, U.; Kamath, A.; Marathe, P.; Ranadive, S. A.;
Sack, J. S.; Tokarski, J. S.; Pavletich, N. P.; Lee, F. Y. F.;
Webster, K. R.; Kimball, S. D. J. Med. Chem. 2004, 47,
1719; (c) Misra, R. N.; Xiao, H.; Williams, D. K.; Kim, K.
S.; Lu, S.; Keller, K. A.; Mulheron, J. G.; Batorsky, R.;
Tokarski, J. S.; Sack, J. S.; Kimball, S. D.; Lee, F. Y.;
Webster, K. R. Bioorg. Med. Chem. Lett. 2004, 14, 2973.
5. (a) Cooper, C. B.; Helal, C. J.; Sanner, M. A. EU Patent
EP-1256578-A1, 2002; (b) Sanner, M. A.; Helal, C. J.;
Cooper, C. B. US Patent U.S. 6,720,427 B2, 2004; (c)
Pevarello, P.; Amica, R.; Villa, M.; Salom, B.; Vulpetti,
A.; Varasi, M. U.S. Patent 372,832, 2000; (d) Pevarello, P.;
Amici, R.; Traquandi, G.; Villa, M.; Vulpetti, A.; Isacchi,
A. WO Patent 0026203, 2000.
55
5
31
32
190
41
8
5
650 72
106 38
3.4
2.6
Modeling of these analogs in the ATP binding region of
cdk5/p25 suggests hydrogen bonding between the ami-
nothiazole N–H and heterocyclic N with the carbonyl
and N–H of Cys83, respectively.10 Substituents at the
aminothiazole 5-position appear to make a hydrophobic
interaction with Phe80, which is in line with SAR
observed (Table 2). Aromatic amides (Table 3) and
ureas (Table 4) may be interacting with IleA10, a
possible reason for increased potency with these groups.
The challenge in gaining selectivity over cdk2 is clear,
considering that only two out of the 29 ATP binding
pocket residues are different. The two that are different,
Cys83 and Asp84 in cdk5 versus Leu83 and His84 in
cdk2, are located in the backbone hydrogen-bonding re-
gion, but the side chains do not point into the ATP bind-
ing pocket, reducing their ability to influence selective
binding of a substrate. The observed selectivity most
likely is the result of subtle differences in conformations
of conserved residues near the bound inhibitor. For
example, modeling of the selective analog 30 in cdk5/
p25, Lys89 is disposed to make a hydrogen bond with
the isoquinolyl nitrogen, whereas that same residue is
further away in cdk2 and cannot make the same inter-
action, possibly explaining the observed selectivity.
6. The kinase selectivity panel consisted of Akt-1, PKCa,
phosphorylase kinase, lck, p70 S6K, p38d, p38c, p38b,
p38, PRAK, ROKa, SGK, CKII, ChK1, PDK1, JNK,
GSK3b, MAPK, RSK2, MSK1, PKA, MAPKAP kinase-
2, AMPK, and MEK1. All assays were conducted in the
presence of 100lM ATP. Compound 1 showed less than
50% inhibition versus the kinases tested.
7. Katritzky, A. R.; Laurenzo, K. S.; Relyea, D. I. Can. J.
Chem. 1988, 66, 1617–1624.
8. See Ref. 5a for detailed cdk5/p25 and cdk2/cyclin E assay
methods.
9. 1H NMR and mass spectral data for representative
compounds:
Compound 1: 1H NMR (400MHz, CDCl3) d 7.02 (s,
1H), 3.13 (m, 1H), 2.71 (m, 1H), 1.31 (d, J = 6.8Hz, 6H),
1.27 (d, J = 6.8Hz, 6H); MS (AP/CI) 213.3 (M+H)+,
100%.
Compound 5: 1H NMR (400MHz, CDCl3) d 7.49 (d,
J = 7.7Hz, 1H), 7.3 (m, 3H), 7.09 (m, 1H), 7.02 (s, 1H), 3.1
(m, 1H), 1.32 (d, J = 6.8Hz, 6H); MS (AP/CI) 262.2
(M+H) +, 100%.
In summary, modifications to HTS hit 1 successfully
decreased the cdk5 IC50 to <10nM and improved cdk2
selectivity to >10-fold while keeping the molecular
weight of the target compounds below 350amu, exem-