Chemistry Letters Vol.33, No.2 (2004)
169
(KBr) 1740, 1717, 1693, 1512, 1350 cmꢂ1
;
1H NMR
side reactions. For example, compound 2d was previously pre-
pared in 85% yield, which was catalyzed by activated Ba(OH)2
in EtOH at room temperature for 8 h,7c whereas under our sol-
vent-free HSVM conditions, it was obtained in 99% yield at
room temperature for 40 min. The high efficiency of the current
procedure may be ascribed to the increased reaction rate result-
ing from ultimately high concentrations of reactants with no use
of solvent. Furthermore, common side reactions such as aldol
cyclizations and ester solvolysis are avoided owing to the use
of only catalytic amount of weak base K2CO3 and the solvent-
free conditions, hence high chemoselectivity was achieved.
In all the examples listed in Table 1, each product consists
of two diastereoisomers, anti and syn isomers. Interestingly, this
diastereoselectivity has not been investigated in previous
work,7b–d,10 Herein, the anti/syn ratio was determined by 1H
NMR spectrscopy, in which the diastereoisomer with the singlet
CH3CO at lower field and the CH3 in ethoxy group at higher
field was assigned as anti isomer.11 The anti isomer is the major
one in all cases. For these two diastereoisomers, the average dif-
ferential chemical shifts (ꢀꢀ) for the CH3CO and the CH3 in
ethoxy group are 0.26 and 0.24 ppm, respectively. They cannot
be separated by column chromatography. Even after crystalliza-
tion for several times, their ratio has no noticeable change. Prob-
ably the two diastereoisomers were in equilibrium via the corre-
sponding enol form even under the present heterogeneous
reaction conditions.11
(300 MHz, CDCl3) ꢀ 8.63 (d, J ¼ 4:2 Hz, 1H), 8.11 (d, J ¼
8:3 Hz, 2H), 7.90 (d, J ¼ 7:8 Hz, 1H), 7.80 (t, J ¼ 7:6 Hz,
1H), 7.51 (d, J ¼ 8:3 Hz, 2H), 7.45 (m, 1H), 4.34 (td, J ¼
10:0, 3.9 Hz, 1H), 4.04 (d, J ¼ 10:7 Hz, 1H), 3.93 (q, J ¼
7:0 Hz, 2H), 3.81 (dd, J ¼ 18:0, 9.5 Hz, 1H), 3.49 (dd, J ¼
18:0, 3.8 Hz, 1H), 2.33 (s, 3H), 1.01 (t, J ¼ 7:0 Hz, 3H); 13C
NMR (75 MHz, CDCl3) ꢀ 201.09, 198.67, 167.63, 152.92,
149.06, 147.08, 137.13, 129.67 (2C), 127.60, 123.82, 123.62
(2C), 121.98, 65.22, 61.82, 41.77, 39.86, 29.64, 13.94; HRMS
(EI–TOF) m=z calcd for C20H20N2O6 (Mþ): 384.1321, found:
384.1317. 2g: IR (KBr) 1734, 1714, 1695, 1532, 1350 cmꢂ1
;
1H NMR (300 MHz, CDCl3) ꢀ 8.63 (d, J ¼ 4:5 Hz, 1H), 8.19
(t, J ¼ 1:8 Hz, 1H), 8.03 (dd, J ¼ 8:2, 1.3 Hz, 1H), 7.90 (d,
J ¼ 7:8 Hz, 1H), 7.78 (td, J ¼ 7:7, 1.7 Hz, 1H), 7.71 (d, J ¼
7:7 Hz, 1H), 7.45 (dd, J ¼ 7:6, 1.1 Hz, 1H), 7.42 (t, J ¼
7:9 Hz, 1H), 4.33 (td, J ¼ 10:1, 4.1 Hz, 1H), 4.04 (d, J ¼
10:7 Hz, 1H), 3.92 (q, J ¼ 7:2 Hz, 2H), 3.82 (dd, J ¼ 17:9,
9.5 Hz, 1H), 3.51 (dd, J ¼ 17:9, 4.2 Hz, 1H), 2.33 (s, 3H),
1.00 (t, J ¼ 7:2 Hz, 3H); 13C NMR (75 MHz, CDCl3) ꢀ
201.15, 198.75, 167.66, 152.95, 149.08, 148.34, 143.59,
137.10, 135.46, 129.30, 127.57, 123.36, 122.24, 121.96,
65.34, 61.81, 41.80, 39.72, 29.72, 13.92; HRMS (EI–TOF)
m=z calcd for C20H20N2O6 (Mþ): 384.1321, found:
384.1338. 2h: IR (KBr) 2229, 1740, 1716, 1694 cmꢂ1 1H
;
NMR (300 MHz, CDCl3) ꢀ 8.62 (m, J ¼ 4:2 Hz, 1H), 7.90
(dt, J ¼ 8:0, 1.1 Hz, 1H), 7.79 (td, J ¼ 7:6, 1.5 Hz, 1H), 7.54
(d, J ¼ 8:3 Hz, 2H), 7.46 (m, 1H), 7.44 (d, J ¼ 8:3 Hz, 2H),
4.24 (m, 1H), 4.01 (dd, J ¼ 10:7, 4.1 Hz, 1H), 3.92(q, J ¼
7:2 Hz, 2H), 3.78 (dd, J ¼ 18:1, 9.5 Hz, 1H), 3.46 (dd, J ¼
18:1, 4.1 Hz, 1H), 2.32 (s, 3H), 1.00 (t, J ¼ 7:2 Hz, 3H); 13C
NMR (75 MHz, CDCl3) ꢀ 201.19, 198.72, 167.69, 152.96,
149.04, 147.01, 137.11, 132.21 (2C), 129.59 (2C), 127.56,
121.97, 118.82, 111.06, 65.26, 61.76, 41.72, 40.12, 29.59,
13.91; HRMS (EI–TOF) m=z calcd for C21H20N2O4 (Mþ):
364.1423, found: 364.1418. 2i: IR (KBr) 1732, 1714,
In summary, Michael reactions of chalcones and azachal-
cones with ethyl acetoacetate mechanically induced under com-
pletely solvent-free and K2CO3-catalyzed conditions have been
developed for the first time. The use of the HSVM technique and
catalytic amount of K2CO3 can give very high chemoselectivity
and thus high product yield. Furthermore, it is fast, clean and of
low cost, and work-up procedure is very simple. These advantag-
es indicate that solvent-free mechanochemistry has a potential to
become an alternative to conventional organic synthesis.
1694 cmꢂ1
;
1H NMR (300 MHz, CDCl3) ꢀ 8.63 (d, J ¼
3:5 Hz, 1H), 7.92 (d, J ¼ 7:6 Hz, 1H), 7.79 (td, J ¼ 7:7,
1.4 Hz, 1H), 7.45 (m, 1H), 7.41 (d, J ¼ 2:1 Hz, 1H), 7.30 (d,
J ¼ 8:2 Hz, 1H), 7.17 (dd, J ¼ 8:2, 2.1 Hz, 1H), 4.17 (td,
J ¼ 9:6, 4.2 Hz, 1H), 3.96 (q, J ¼ 7:0 Hz, 2H), 3.94 (d,
J ¼ 10:7 Hz, 1H), 3.73 (dd, J ¼ 17:5, 9.5 Hz, 1H), 3.42 (dd,
J ¼ 17:5, 4.3 Hz, 1H), 2.31 (s, 3H), 1.04 (t, J ¼ 7:0 Hz, 3H);
13C NMR (75 MHz, CDCl3) ꢀ 201.45, 198.74, 167.73,
152.93, 149.01, 141.59, 137.11, 132.34, 131.07, 130.63,
130.34, 128.17, 127.55, 122.00, 65.50, 61.79, 41.81, 39.20,
29.65, 13.93; HRMS (EI–TOF) m=z calcd for C20H19NO4Cl2
(Mþ): 407.0691, found: 407.0692. 2j: IR (KBr) 1732, 1709,
We are grateful to financial support from the National Sci-
ence Fund for Distinguished Young Scholars (20125205), Anhui
Provincial Bureau of Personnel Affairs and Anhui Provincial
Natural Science Foundation (00045306).
References and Notes
1
2
C. Suryanarayana, Prog. Mater. Sci., 46, 1 (2001).
V. V. Volkov and K. G. Myakishev, Inorg. Chim. Acta, 289, 51
(1999).
1698 cmꢂ1
;
1H NMR (300 MHz, CDCl3) ꢀ 8.63 (d,
3
4
5
6
7
V. P. Balema, K. W. Dennis, and V. K. Pecharsky, Chem.
Commun., 2000, 1665.
a) F. Toda, Acc. Chem. Res., 28, 480 (1995). b) K. Tanaka and
F. Toda, Chem. Rev., 100, 1025 (2000).
V. D. Makhaev, A. P. Borisov, and L. A. Petrova, J. Organo-
met. Chem., 590, 222 (1999).
J ¼ 4:2 Hz, 1H), 7.91 (d, J ¼ 8:3 Hz, 1H), 7.77 (td, J ¼ 7:7,
1.3 Hz, 1H), 7.43 (m, 1H), 6.79 (d, J ¼ 1:4 Hz, 1H), 6.75
(dd, J ¼ 8:0, 1.8 Hz, 1H), 6.65 (d, J ¼ 8:0 Hz, 1H), 5.87 (s,
2H), 4.14 (td, J ¼ 9:6, 4.0 Hz, 1H), 3.95 (q, J ¼ 7:2 Hz, 2H),
3.91 (d, J ¼ 10:7 Hz, 1H), 3.72 (dd, J ¼ 17:5, 9.5 Hz, 1H),
3.38 (dd, J ¼ 17:5, 4.3 Hz, 1H), 2.31 (s, 3H), 1.04 (t,
J ¼ 7:2 Hz, 3H); 13C NMR (75 MHz, CDCl3) ꢀ 202.30,
199.17, 168.12, 153.17, 148.96, 147.54, 146.46, 137.01,
134.83, 127.34, 121.99, 121.76, 108.93, 108.18, 101.00,
66.40, 61.50, 42.24, 39.99, 29.51, 13.98; HRMS (EI–TOF)
m=z calcd for C21H21NO6 (Mþ): 383.1369, found: 383.1376.
10 a) B. Baruah, A. Boruah, D. Prajapati, and J. S. Sandhu, Tetra-
hedron Lett., 38, 1449 (1997). b) A. Boruah, M. Baruah, D.
Prajapati, and J. S. Sandhu, Synth. Commun., 28, 653 (1998).
c) B. M. Choudary, M. L. Kantam, B. Kavita, C. V. Reddy,
and F. Figueras, Tetrahedron, 56, 9357 (2000).
M. Nuchter, B. Ondruschka, and R. Trotzki, J. Prakt. Chem.,
¨
342, 720 (2000).
a) E. D. Bergman, D. Ginsberg, and R. Rappo, Org. React., 10,
179 (1959). b) W. Davey and J. R. Gwilt, J. Chem. Soc., 1957,
1015. c) A. Garcia-Raso, J. Garcia-Raso, B. Campaner, R.
Mestres, and J. V. Sinisterra, Synthesis, 1982, 1037. d) T.-L.
Li, Y. Cui, G.-F. Chen, Z.-L. Cheng, and T.-S. Li, Synth.
Commun., 33, 353 (2003).
Z. Zhang, Y.-W. Dong, and G.-W. Wang, Chem. Lett., 32, 966
(2003).
Selected spectral data for the anti isomer of product 2. 2f: IR
8
9
11 J. Christoffers, J. Chem. Soc., Perkin Trans. 1, 1997, 3141.
Published on the web (Advance View) January 14, 2004; DOI 10.1246/cl.2004.168