Labadie et al.
farnesyl transferase (PFTase) inhibitors have shown a high
potency against the parasites responsible for malaria (Plasmo-
dium falciparum)10,11 and the Chagas’ disease parasite Trypa-
nosoma cruzi.12,13
The modification reactions are catalyzed by three different
protein prenyl transferases: PFTase (EC 2.5.1.58), protein
geranylgeranyltransferase-I (PGGTase-I, EC 2.5.1.59), and Rab
(a Ras-like protein) geranylgeranyltransferase (RabGGTase or
PGGTase-II, EC 2.5.1.60). The closely related PFTase and
PGGTase-I transfer prenyl groups from prenyl diphosphates to
proteins containing a C-terminal CAAX motif (also known as
a CAAX box), where C is cysteine, A is usually a small aliphatic
amino acid, and X can be a variety of amino acids (Figure 1).
moiety were developed by the Distefano and Spielmann groups,
respectively.19-21 FPP analogues appended with fluorescent
anthranilate esters were developed by Waldmann and co-
workers.22,23 Wiemer and co-workers reported the synthesis of
N-alkylated derivatives of GPP as fluorescent labels that are
resistant to esterases.24 Those compounds were subsequently
effectively transferred to peptides and proteins. Distefano and
co-workers recently reported that alkynyl ether derivatives of
GPP are alternative substrates that can be tethered to other
biomolecules after farnesylation.25 Prestwich and Liu synthe-
sized a conjugated geranylgeranyl diphosphate (GGPP) deriva-
tive (∆∆GG) with a conjugated olefinic fluorophore.26
Incorporation of a bioorthogonal functional group27,28 into
the FPP structure provides a technique for modifying proteins
for subsequent tethering and analysis. We focused our attention
on the Staudinger ligation and the Cu(I)-catalyzed Huisgen
cycloaddition (click reaction), both of which have been used in
vivo. A version of the Staudinger ligation, introduced by
Bertozzi and Saxon,29 involves intramolecular trapping of a
phosphine/azide adduct eventually to give a stable amide
linkage. The click ligation, introduced by Sharpless and cowork-
ers,30,31 is a Cu(I)-catalyzed [2 + 3] cycloaddition reaction
between azide and terminal alkyne to produce a 1,2,3-triazole.
We recently reported that proteins derivatized with suitably
functionalized analogues of FPP could be readily immobilized
on glass slides.32 Related approaches were recently reported from
the laboratories of Distefano and coworkers33 and Zhao and
coworkers34 We now report the synthesis of a family of azido-
and alkyne-substituted FPP analogues and their ability to
function as alternative substrates for yeast PFTase.
Results and Discussion
FIGURE 1. Reactions catalyzed by PFTase and PGGTase-I.
Synthesis. We designed a series of azido and alkyne
analogues as reagents with which to modify proteins for Huisgen
and Staudinger ligations (Figure 2). All of the analogues have
The X residue determines whether a farnesyl (X ) A, S, C, M,
Q) or a geranylgeranyl (X ) L, F) is added.14
The rational design of farnesyl diphosphate (FPP) analogues
for PFTase with specific functions has been facilitated by the
X-ray crystal structures for rat15 and human16 PFTases. Spiel-
mann and co-workers reported that incorporation of an aniline
moiety at the location of the ω-isoprene unit of FPP resulted in
a transferable analogue.17 Recently, successful incorporation of
this aniline-geranyl diphosphate (GPP) (AGPP) analogue was
monitored in HEK-293 cells by the use of antibodies raised
against the FPP analogue.18 Photoaffinity analogues of FPP
incorporating a benzophenone moiety or a functionalized aniline
(18) Troutman, J. M.; Roberts, M. J.; Andres, D. A.; Spielmann, H. P.
Bioconjugate Chem. 2005, 16, 1209-1217.
(19) Turek-Etienne, T. C.; Strickland, C. L.; Distefano, M. D. Biochem-
istry 2003, 42, 3716-3724.
(20) DeGraw, A. J.; Zhao, Z.; Strickland, C. L.; Taban, A. H.; Hsieh, J.;
Jefferies, M.; Xie, W.; Shintani, D. K.; McMahan, C. M.; Cornish, K.;
Distefano, M. D. J. Org. Chem. 2007, 72, 4587-4595.
(21) Chehade, K. A.; Kiegiel, K.; Isaacs, R. J.; Pickett, J. S.; Bowers,
K. E.; Fierke, C. A.; Andres, D. A.; Spielmann, H. P. J. Am. Chem. Soc.
2002, 124, 8206-8219.
(22) Owen, D. J.; Alexandrov, K.; Rostkova, E.; Scheidig, A. J.; Goody,
R. S.; Waldmann, H. Angew. Chem., Int. Ed. 1999, 38, 509-512.
(23) Kuhn, K.; Owen, D. J.; Bader, B.; Wittinghofer, A.; Kuhlmann, J.;
Waldmann, H. J. Am. Chem. Soc. 2001, 123, 1023-1035.
(24) Kim, M.; Kleckley, T. S.; Wiemer, A. J.; Holstein, S. A.; Hohl, R.
J.; Wiemer, D. F. J. Org. Chem. 2004, 69, 8186-8193.
(25) Duckworth, B. P.; Zhang, Z.; Hosokawa, A.; Distefano, M. D.
ChemBioChem 2007, 8, 98-105.
(26) Liu, X.-H.; Prestwich, G. D. J. Am. Chem. Soc. 2002, 124, 20-21.
(27) van Swieten, P. F.; Leeuwenburgh, M. A.; Kessler, B. M.;
Overkleeft, H. S. Org. Biomol. Chem. 2005, 3, 20-27.
(28) Prescher, J. A.; Bertozzi, C. R. Nat. Chem. Biol. 2005, 1, 13-21.
(29) Saxon, E.; Bertozzi, C. R. Science (Washington, DC, U.S.) 2000,
287, 2007-2010.
(30) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596-2599.
(31) Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.;
Finn, M. G. J. Am. Chem. Soc. 2003, 125, 3192-3193.
(32) Gauchet, C.; Labadie, G. R.; Poulter, C. D. J. Am. Chem. Soc. 2006,
128, 9274-9275.
(33) Duckworth, B. P.; Xu, J.; Taton, A.; Guo, A.; Distefano, M. D.
Bioconjugate Chem. 2006, 17, 967-974.
(34) Kho, Y.; Kim, S. C.; Jiang, C.; Barma, D.; Kwon, S. W.; Cheng,
J.; Jaunbergs, J.; Weinbaum, C.; Tamanoi, F.; Falck, J.; Zhao, Y. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 12479-12484.
(10) Glenn, M. P.; Chang, S. Y.; Horney, C.; Rivas, K.; Yokoyama, K.;
Pusateri, E. E.; Fletcher, S.; Cummings, C. G.; Buckner, F. S.; Pendyala,
P. R.; Chakrabarti, D.; Sebti, S. M.; Gelb, M. H.; Van Voorhis, W. C.;
Hamilton, A. D. J. Med. Chem. 2006, 49, 5710-5727.
(11) Nallan, L.; Bauer, K. D.; Bendale, P.; Rivas, K.; Yokoyama, K.;
Horney, C. P.; Pendyala, P. R.; Floyd, D.; Lombardo, L. J.; Williams, D.
K.; Hamilton, A.; Sebti, S.; Windsor, W. T.; Weber, P. C.; Buckner, F. S.;
Chakrabarti, D.; Gelb, M. H.; Van Voorhis, W. C. J. Med. Chem. 2005,
48, 3704-3713.
(12) Hucke, O.; Gelb, M. H.; Verlinde, C. L.; Buckner, F. S. J. Med.
Chem. 2005, 48, 5415-5418.
(13) Esteva, M. I.; Kettler, K.; Maidana, C.; Fichera, L.; Ruiz, A. M.;
Bontempi, E. J.; Andersson, B.; Dahse, H. M.; Haebel, P.; Ortmann, R.;
Klebe, G.; Schlitzer, M. J. Med. Chem. 2005, 48, 7186-7191.
(14) Harris, C. M.; Poulter, C. D. Nat. Prod. Rep. 2000, 17, 137-144.
(15) Strickland, C. L.; Windsor, W. T.; Syto, R.; Wang, L.; Bond, R.;
Wu, Z.; Schwartz, J.; Le, H. V.; Beese, L. S.; Weber, P. C. Biochemistry
1998, 37, 16601-16611.
(16) Long, S. B.; Hancock, P. J.; Kral, A. M.; Hellinga, H. W.; Beese,
L. S. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 12948-12953.
(17) Chehade, K. A.; Andres, D. A.; Morimoto, H.; Spielmann, H. P. J.
Org. Chem. 2000, 65, 3027-3033.
9292 J. Org. Chem., Vol. 72, No. 24, 2007