ACS Medicinal Chemistry Letters
Letter
F. Allosteric activators of glucokinase: potential role in diabetes
therapy. Science 2003, 301, 370−373.
(8) Sarabu, R.; Grimsby, J. Targeting glucokinase activation for the
treatment of type 2 diabetes: a status review. Curr. Opin. Drug
Discovery Dev. 2005, 8, 631−637.
(9) Johnson, D.; Shepherd, R. M.; Gill, D.; Gorman, T.; Smith, D.
M.; Dunne, M. J. Glucokinase activators: molecular tools for studying
the physiology of insulin-secreting cells. Biochem. Soc. Trans. 2007, 35,
1208−1210.
(10) Grimsby, J.; Berthel, S. J.; Sarabu, R. Glucokinase activators for
the potential treatment of type 2 diabetes. Curr. Top. Med. Chem.
2008, 8, 1524−1532.
(11) Matschinsky, F. M. Assessing the potential of glucokinase
activators in diabetes therapy. Nat. Rev. Drug Discovery 2009, 8, 399−
416.
(12) Matschinsky, F. M.; Zelent, B.; Doliba, N.; Li, C.; Vanderkooi, J.
M.; Naji, A.; Sarabu, R.; Grimsby, J. Glucokinase activators for diabetes
therapy. Diabetes Care. 2011, 34, S236−S243.
(13) Bonadonna, R. C.; Heise, T.; Arbet-Engels, C.; Kapitza, C.;
Avogaro, A.; Grimsby, J.; Zhi, J.; Grippo, J. F.; Balena, R. Piragliatin
(RO4389620), a novel glucokinase activator, lowers plasma glucose
both in the postabsorptive state and after a glucose challenge in
patients with type 2 diabetes mellitus: A mechanistic study. J. Clin.
Endocrinol. Metab. 2010, 95, 5028−5036.
(14) Kamata, K.; Mitsuya, M.; Nishimura, T.; Eiki, J.; Nagata, Y.
Structural basis for allosteric regulation of the monomeric allosteric
enzyme human glucokinase. Structure 2004, 12, 429−438.
(15) Pal, P.; Miller, B. G. Activating mutations in the human
glucokinase gene revealed by genetic selection. Biochemistry 2009, 48,
814−816.
(16) Ralph, E. C.; Thomson, J.; Almaden, J.; Sun, S. Glucose
modulation of glucokinase activation by small molecules. Biochemistry
2008, 47, 5028−5036.
(17) Antoine, M.; Boutin, J. A.; Ferry, G. Binding kinetics of glucose
and allosteric activators to human glucokinase reveal multiple
conformational states. Biochemistry 2009, 48, 5466−5482.
(18) McKerrecher, D.; Allen, J. V.; Bowker, S. S.; Boyd, S.; Caulkett,
P. W. R.; Currie, G. S.; Davies, C. D.; Fenwick, M. L.; Gaskin, H.;
Grange, E.; Hargreaves, R. B.; Hayter, B. R.; James, R.; Johnson, K. M.;
Johnstone, C.; Jones, C. D.; Lackie, S.; Rayner, J. W.; Walker, R. P.
Discovery, synthesis and biological evaluation of novel glucokinase
activators. Bioorg. Med. Chem. Lett. 2005, 15, 2103−2106.
(19) Neet, K. E.; Keenan, R. P.; Tippett, P. S. Observation of a
kinetic slow transition in monomeric glucokinase. Biochemistry 1990,
29, 770−777.
(20) Perozzo, R.; Folkers, G.; Scapozza, L. Thermodynamics of
protein−ligand interactions: history, presence, and future aspects. J.
Recept. Signal Transduction 2004, 24, 1−52.
(21) Anderka, O.; Boyken, J.; Aschenbach, U.; Batzer, A.;
Boscheinen, O.; Schmoll, D. Biophysical characterization of the
interaction between hepatic glucokinase and its regulatory protein. J.
Biol. Chem. 2008, 283, 31333−31340.
(22) Molnes, J.; Bjorkhaug, L.; Sovik, O.; Njolstad, P. R.; Flatmark, T.
Catalytic activation of human glucokinase by substrate binding−
residue contacts involved in the binding of D-glucose to the super-
open form and conformational transitions. FEBS 2008, 275, 2467−
2481.
(23) Takahasi, K.; Hashimoto, N.; Nakama, C.; Kamata, K.; Sasaki,
K.; Yoshimoto, R.; Ohyama, S.; Hosaka, H.; Maruki, H.; Nagata, Y.;
Eiki, J.; Nishimura, T. The design and optimization of a series of 2-
(pyridin-2-yl)-1H-benzimidazole compounds as allosteric glucokinase
activators. Bioorg. Med. Chem. 2009, 17, 7042−7051.
known binding partners including the glucokinase regulatory
protein and the pro-apoptotic protein BAD.11 The impact of
glucose-independent activation of GCK in the liver, another
prominent tissue where this enzyme is localized, is also unclear.
These uncertainties emphasize the need for continued
investigations into the mechanism of action of these important
putative therapeutic agents.
ASSOCIATED CONTENT
* Supporting Information
■
S
Synthetic procedures and experimental methods. This material
AUTHOR INFORMATION
Corresponding Author
*(B.G.M.) Phone: 850-645-6570. Fax: 850-644-8281. E-mail:
■
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
Funding
This work was supported, in part, by a grant from the National
Institute of Diabetes and Digestive and Kidney Diseases
(DK081358).
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We would like to thank Dr. Claudius Mundoma, Director of the
Physical Biochemistry Facility in the Institute of Molecular
Biophysics at Florida State, for help with ITC measurements
and Shehzad Khan-Thomas for synthetic assistance.
ABBREVIATIONS
■
GCK, glucokinase; MODY-II, maturity onset diabetes of the
young type 2; PHHI, persistent hyperinsulinemic hypoglycemia
of infancy; NADP+, nicotinamide adenine dinucleotide
phosphate; ITC, isothermal titration calorimetry
REFERENCES
■
(1) Wilson, J. E. Hexokinases. Rev. Physiol. Biochem. Pharmacol. 1995,
126, 65−198.
(2) Meglasson, M. D.; Matschinsky, F. M. New perspectives on
pancreatic islet glucokinase. Am. J. Physiol. 1984, 246, E1−E13.
(3) Holroyde, M. J.; Allen, M. B.; Storer, A. C.; Warsy, A. S.;
Chesher, J. M. E.; Trayer, I. P.; Cornish-Bowden, A.; Walker, D. G.
The purification in high yield and characterization of rat hepatic
glucokinase. Biochem. J. 1976, 153, 363−373.
(4) Cardenas, M.; Rabajille, E.; Niemeyer, H. Maintenance of the
monomeric structure of glucokinase under reacting conditions. Arch.
Biochem. Biophys. 1978, 190, 142−148.
(5) Larion, M.; Miller, B. G. Homotropic allosteric regulation in
monomeric mammalian glucokinase. Arch. Biochem. Biophys. 2011,
519, 103−111.
(6) Gloyn, A. Glucokinase (GCK) mutations in hyper- and
hypoglycemia: maturity-onset diabetes of the young, permanent
neonatal diabetes, and hyperinsulinemia of infancy. Hum. Mutat.
2003, 22, 353−362.
(24) Bebernitz, G.; Beaulieu, V.; Dale, B.; Deacon, R.; Duttaroy, A.;
Gao, J.; Grondine, M.; Gupta, R.; Kakmak, M.; Kavana, M.; Kirman,
L.; Liang, J.; Maniara, W.; Munshi, S.; Nadkarni, S.; Schuster, H.;
Stams, T.; St. Denny, I.; Taslimi, P.; Vash, B.; Caplan, S. Investigation
of functionally liver selective glucokinase activators for the treatment
of type 2 diabetes. J. Med. Chem. 2009, 52, 6142−6152.
(7) Grimsby, J.; Sarabu, R.; Corbett, W. L.; Haynes, N. E.; Bizzarro,
F. T.; Coffey, J. W.; Guertin, K. R.; Hilliard, D. W.; Kester, R. F.;
Mahaney, P. E.; Marcus, L.; Qi, L.; Spence, C. L.; Tengi, J.; Magnuson,
M. A.; Chu, C. A.; Dvorozniak, M. T.; Matschinsky, F. M.; Grippo, J.
D
dx.doi.org/10.1021/ml400061x | ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX