RESEARCH
| RESEARCH ARTICLE
into a valuable synthetic tool for cross-coupling
(45). The use of mpg-CN as a semiconductor
photocatalyst allows catalyst recoverability and
reuse as a distinct advantage. The reaction con-
ditions require no additional ligands for nickel
complexation, the reactions proceed at room
temperature, and the chemical and photosta-
bilty of mpg-CN allows easy scalability to gram
quantities (example 8a). Once dissolved in di-
methylacetamide (DMA), ethyl 4-bromobenzoate
irradiated with blue light in the presence of
morpholine (a heterocycle featuring both amine
and ether functional groups), mpg-CN, and a
catalytic amount NiBr2•glyme was converted
into the corresponding C–N functionalized pro-
duct in 81% isolated yield. The use of o-/m-/p-
substituted aryl bromides (or even chlorides,
example 8h) yielded the corresponding regio-
specific functionalized products in good to ex-
cellent yields, and different functional groups,
such as ester, aldehyde, ketone, amide, trifluo-
romethyl, and cyano, were tolerated under the
reaction condition. The mpg-CN/Ni dual cata-
lytic reactions are effective for various nitrogen
nucleophiles (examples 8a to 8q), including sub-
stituted benzenesulfonamide providing the cor-
responding N-aryl sulfonamide (8r) [a motif
present in pharmaceuticals (46)], in good to ex-
cellent yields.
bifunctionalized product 9a in 74% yield (Fig. 5).
This sequential reaction simply required the ad-
dition of KBr and continuous irradiation once
the trifluoromethylation reaction was complete.
Likewise, when sodium triflinate was added post
cyanation (examples 9b and 9c), the bifunction-
alized products containing –CF3 and –CN groups
were obtained.
Considering all of these results in aggregate,
the organic semiconductor mpg-CN stands out
as one of the most versatile visible light–activated
photocatalysts, providing an inexpensive, non-
toxic alternative to classical transition metal cat-
alysts and organic dyes.
28. K. Ohkubo, K. Mizushima, R. Iwata, S. Fukuzumi, Chem. Sci.
(Camb.) 2, 715–722 (2011).
29. Z. C. Litman, Y. Wang, H. Zhao, J. F. Hartwig, Nature 560,
355–359 (2018).
30. J. B. Metternich, R. Gilmour, J. Am. Chem. Soc. 138,
1040–1045 (2016).
31. M. J. James, J. L. Schwarz, F. Strieth-Kalthoff, B. Wibbeling,
F. Glorius, J. Am. Chem. Soc. 140, 8624–8628 (2018).
32. J. Hou et al., J. Am. Chem. Soc. 140, 5257–5263 (2018).
33. Y. Hayashi, Chem. Sci. 7, 866–880 (2016).
34. C. Amatore, A. R. Brown, J. Am. Chem. Soc. 118, 1482–1486
(1996).
35. J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 40,
102–113 (2011).
36. Y. Ye, M. S. Sanford, J. Am. Chem. Soc. 134, 9034–9037
(2012).
37. Y. Ji et al., Proc. Natl. Acad. Sci. U.S.A. 108, 14411–14415 (2011).
38. D. A. Nagib, D. W. C. MacMillan, Nature 480, 224–228
(2011).
39. S. Senaweera, J. D. Weaver, J. Am. Chem. Soc. 138, 2520–2523
(2016).
40. M. Sundermeier, S. Mutyala, A. Zapf, A. Spannenberg, M. Beller,
J. Organomet. Chem. 684, 50–55 (2003).
41. K. Foo, E. Sella, I. Thomé, M. D. Eastgate, P. S. Baran, J. Am.
Chem. Soc. 136, 5279–5282 (2014).
42. S. Schmidbauer, A. Hohenleutner, B. König, Beilstein J. Org.
Chem. 9, 2088–2096 (2013).
43. J. C. Tellis, D. N. Primer, G. A. Molander, Science 345, 433–436
(2014).
44. E. B. Corcoran et al., Science 353, 279–283 (2016).
45. J. Twilton et al., Nat. Rev. Chem. 1, 0052 (2017).
46. T. Kim, S. J. McCarver, C. Lee, D. W. C. MacMillan, Angew.
Chem. Int. Ed. 57, 3488–3492 (2018).
REFERENCES AND NOTES
1. C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 113,
5322–5363 (2013).
2. M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 81,
6898–6926 (2016).
3. D. A. Nicewicz, D. W. C. MacMillan, Science 322, 77–80 (2008).
4. N. A. Romero, D. A. Nicewicz, Chem. Rev. 116, 10075–10166 (2016).
5. I. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science 346,
725–728 (2014).
6. I. Ghosh, L. Marzo, A. Das, R. Shaikh, B. König, Acc. Chem. Res.
49, 1566–1577 (2016).
7. M. Majek, F. Filace, A. J. von Wangelin, Beilstein J. Org. Chem.
10, 981–989 (2014).
8. J. J. Devery Iii et al., Chem. Sci. 6, 537–541 (2015).
9. C. J. O’Brien et al., J. Org. Chem. 83, 8926–8935 (2018).
10. J. B. McManus, D. A. Nicewicz, J. Am. Chem. Soc. 139,
2880–2883 (2017).
11. N. A. Romero, K. A. Margrey, N. E. Tay, D. A. Nicewicz, Science
349, 1326–1330 (2015).
12. X. Wang et al., Nat. Mater. 8, 76–80 (2009).
13. Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51,
68–89 (2012).
47. S. L. Scott, ACS Catal. 8, 8597–8599 (2018).
48. C. W. Jones, Top. Catal. 53, 942–952 (2010).
ACKNOWLEDGMENTS
Recoverability and reuse of mpg-CN
We thank R. Vasold, R. Hoheisel, and J. Zach for GC-MS,
CV measurements, and technical assistance, respectively, and
R. Lahmy for proofreading the manuscript. Funding: We thank
the Deutsche Forschungsgemeinschaft (GRK 1626 and DFG An 156
13-1) for financial support. This project also received funding
from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant
agreement no. 741623). Author contributions: B.K. and M.A.
conceived and directed the project. I.G., B.K., M.A., J.K., A.S.,
and N.S. designed the experiments. I.G., J.K., A.S., and N.S.
performed and analyzed the experiments. I.G., B.K., M.A., J.K.,
and A.S. prepared the manuscript. Competing interests: The
authors declare no conflicts of interest. Data and materials
availability: Crystallographic parameters for compound 7c are
available free of charge from the Cambridge Crystallographic Data
Centre under CCDC 1880753. Data are available in the
supplementary materials.
The use of insoluble heterogeneous semicon-
ductor mpg-CN as a photocatalyst and its photo-
and chemical stability facilitate easy recovery of
the catalyst from a wide variety of reaction mix-
tures, including gram-scale and dual catalytic
reactions, by simple centrifugation (Fig. 5) or
filtration (fig. S14). The recovered catalyst could
be reused for multiple transformations with
conserved activity, as specifically appraised by
determining the product yields over four cata-
lytic cycles either for the same reaction (Fig. 5A)
or for different reactions performed in a se-
quence (Fig. 5B); rates of photocatalytic trans-
formations (47, 48) over four catalytic cycles were
also conserved (Fig. 5C). The photocatalyst's high
stability enables one-pot sequential type A oxi-
dative direct C–H bifunctionalizations of hetero-
arenes in the presence of reactive C(sp3) radicals
and strong nucleophiles. This is exemplified by
consecutive trifluoromethylation and bromina-
tion reactions that led to the formation of the
14. D. Friedmann, A. Hakki, H. Kim, W. Choi, D. Bahnemann, Green
Chem. 18, 5391–5411 (2016).
15. H. Kisch, Angew. Chem. Int. Ed. 52, 812–847 (2013).
16. H. Kisch, Acc. Chem. Res. 50, 1002–1010 (2017).
17. J. P. Dinnocenzo et al., J. Am. Chem. Soc. 111, 8973–8975 (1989).
18. W. Schindler, H. Kisch, J. Photochem. Photobiol. Chem. 103,
257–264 (1997).
19. J. L. DiMeglio, B. M. Bartlett, Chem. Mater. 29, 7579–7586 (2017).
20. J. B. Liebig, Ann. Pharm. 10, 10 (1834).
21. For previous use of mpg-CN in synthetic transformations by
Antonietti, Blechert, Wang, and others, see (22).
22. A. Savateev, I. Ghosh, B. König, M. Antonietti, Angew. Chem.
Int. Ed. 57, 15936–15947 (2018).
23. A. W. Wang, C. D. Wang, L. Fu, W. N. Wong-Ng, Y. C. Lan,
Nano-Micro Lett. 9, 21 (2017).
24. Morphology and other information about mpg-CN are available
in the supplementary materials.
25. Y. Dai et al., Nat. Commun. 9, 60 (2018).
26. L. Furst, B. S. Matsuura, J. M. R. Narayanam, J. W. Tucker,
C. R. J. Stephenson, Org. Lett. 12, 3104–3107 (2010).
27. The catalyst loading discussion is provided in the synthetic
procedures section in the supplementary materials.
SUPPLEMENTARY MATERIALS
Materials and Methods
Figs. S1 to S23
Tables S1 to S7
References (49–105)
9 December 2018; accepted 3 June 2019
10.1126/science.aaw3254
Ghosh et al., Science 365, 360–366 (2019)
26 July 2019
7 of 7