ORGANIC
LETTERS
2005
Vol. 7, No. 9
1837-1839
Stereochemical Diversity in Chiral
Ligand Design: Discovery and
Optimization of Catalysts for the
Enantioselective Addition of Allylic
Halides to Aldehydes
Jae-Young Lee, Jeremie J. Miller, Steven S. Hamilton, and Matthew S. Sigman*
Department of Chemistry, UniVersity of Utah, 315 South 1400 East,
Salt Lake City, Utah 84112-085
Received March 10, 2005
ABSTRACT
We have identified a new set of stereochemically diverse oxazoline ligands derived from simple amino acids that promote the Cr-catalyzed
enantioselective addition of allylic halides to aldehydes in up to 95% ee. The Cr-catalyzed allylation using ligand 1d is rather insensitive to the
nature of the allylic bromide (crotyl, allyl, and methallyl) in that >90% ee is observed for all three bromides evaluated in the addition to
benzaldehyde.
The versatility of Cr(II)-mediated carbon-carbon bond
formation in target-oriented and diverse chiral building block
synthesis provides for a compelling target in asymmetric
catalysis.1 The foundation for the development of such
catalytic systems was provided by Fu¨rstner and Shi when
they reported a method to render Cr(II)-mediated processes
catalytic in Cr with Mn(0) as the reductant and trimethylsilyl
chloride as the turnover agent.2 Since then, several enantio-
selective Cr(II)-catalyzed reactions have been reported with
variable success.3,4 Herein, we report a set of new catalysts
for the chromium-catalyzed enantioselective addition of allyl
fragments to aldehydes5 (Nozaki-Hiyama reaction) in which
ligand stereochemical diversity plays a vital role in catalyst
optimization.
(3) For salen-based systems, see: (a) Bandini, M.; Cozzi, P. G.;
Melchiorre, P.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 1999, 38, 3357-
3359. (b) Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. Chem. Commun.
2002, 919-927 and references therein. (c) For an application, see:
Lombardo, M.; Licciulli, S.; Morganti, S.; Trombini, C. Chem. Commun.
2003, 1762-1763. (d) Berkessel, A.; Menche, D.; Sklorz, C. A.; Schro¨der,
M.; Paterson, I. Angew. Chem., Int. Ed. 2003, 42, 1032-1035. (e) Berkessel,
A.; Schro¨der, M.; Sklorz, C. A.; Tabanella, S.; Vogl, N.; Lex, J.; Neudo¨rfl,
J. M. J. Org. Chem. 2004, 69, 3050-3056. For an application, see: Paterson,
I.; Bergmann, H.; Menche, D.; Berkessel, A. Org. Lett. 2004, 6, 1293-
1295.
(4) For oxazoline-based systems, see: (a) Choi, H.-W.; Nakajima, K.;
Demeke, D.; Kang, F.-A.; Jun, H.-S.; Wan, Z.-K.; Kishi, Y. Org. Lett. 2002,
4, 4435-4438. (b) Inoue, M.; Suzuki, T.; Nakada, M. J. Am. Chem. Soc.
2003, 125, 1140-1141. (c) Using modified catalytic conditions (Zr(Cp)2Cl2
instead of TMSCl), see: Namba, K.; Kishi, Y. Org. Lett. 2004, 6, 5031-
5033. (d) For propargylation, see: Inoue, M.; Nakada, M. Org. Lett. 2004,
6, 2977-2980.
(1) For reviews, see: (a) Fu¨rstner, A. Chem. ReV. 1999, 99, 991-1045.
(b) Wessjohann, L. A.; Scheid, G. Synthesis 1999, 1-36. (c) Nozaki, H.;
Takai, K. Proc. Jpn. Acad. 2000, 76, 123-131.
(2) (a) Fu¨rstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 2533-2534.
(b) Fu¨rstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349-12357.
10.1021/ol050528e CCC: $30.25
© 2005 American Chemical Society
Published on Web 03/24/2005