3948 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 12
Letters
(12) Wei, C.-Q.; Gao, Y.; Lee, K.; Guo, R.; Li, B.; Zhang, M.; Yang,
D.; Burke, T. R., Jr. Macrocyclization in the design of Grb2 SH2
domain-binding ligands exhibiting high potency in whole cell
systems. J. Med. Chem. 2003, 46, 244-254.
10-fold reduction for 4f compared to 4h). This may be
attributed to the differential roles in pTyr recognition
played by the ArgâB5 residue, which is situated in the
rear of the binding pocket compared to the more
anteriorly located ArgRA2 residue. Thermodynamic
studies have shown that while the ArgâB5 residue is
critical for recognition and binding of pTyr-containing
peptides, the ArgRA2 residue is less important.30 Data
presented in Table 1 highlight the need for high-affinity
binding of at least one anionic interaction with the
ArgâB5 residue. It is of note that cyclic Grb2 SH2
domain-binding peptides have been reported that are
devoid of phosphate-mimicking functionality at the Y0
position. However, these peptides contain acidic residues
at the Y-2 amino acid position that are hypothesized to
bond with the ArgâB5 residue, thereby highlighting the
importance of this critical interaction.31
In conclusion, by examination of a variety of phos-
phoryl mimicking functionalities within the context of
a conformationally constrained Grb2 SH2 domain-
binding platform, ligands have been identified that
contain monoacidic phosphoryl mimetics that exhibit
low nanomolar affinities. The current study may facili-
tate the development of therapeutically relevant Grb2
SH2 domain-binding antagonists.
(13) Shi, Z.-D.; Wei, C.-Q.; Lee, K.; Liu, H.; Zhang, M.; Araki, T.;
Roberts, L. R.; Worthy, K. M.; Fisher, R. J.; Neel, B. G.; Kelley,
J. A.; Yang, D.; Burke, T. R., Jr. Macrocyclization in the design
of non-phosphorus-containing Grb2 SH2 domain-binding ligands.
J. Med. Chem. 2004, 47 (8), 2166-2169.
(14) Available from Sigma-Aldrich Chemical Corp.
(15) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and
activity of a new generation of ruthenium-based olefin meta-
thesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimi-
dazol-2-ylidene ligands. Org. Lett. 1999, 1, 953-956.
(16) Wei, C.-Q.; Li, B.; Guo, R.; Yang, D.; Burke, T. R., Jr. Develop-
ment of a phosphatase-stable phosphotyrosyl mimetic suitably
protected for the synthesis of high affinity Grb2 SH2 domain-
binding ligands. Bioorg. Med. Chem. Lett. 2002, 12, 2781-2784.
(17) Gao, Y.; Wei, C.-Q.; Burke, T. R., Jr. Olefin metathesis in the
design and synthesis of a globally constrained Grb2 SH2 domain
inhibitor. Org. Lett. 2001, 3, 1617-1620.
(18) Soi, A.; Pfieiffer, J.; Jauch, J.; Schuring, V. Synthesis of chiral
calix[n]arenes. Part 2: Synthesis of new chiral calix[n]arenes
based on (p-hydroxy-phenyl)-methone. Tetrahedron: Asymmetry
1999, 10, 177-182.
(19) Boyd, E. A.; Regan, A. C.; James, K. Synthesis of gama-keto-
substituted phosphinic acids from bis(trimethylsilyl)phosphonie
and alpha,beta-unsaturated ketones. Tetrahedron Lett. 1992, 33,
813-816.
(20) Boyd, E. A.; Regan, A. C.; James, K. Synthesis of alkylphosphinic
acids from silyl phosphonites and alkyl halides. Tetrahedron Lett.
1994, 35, 4223-4226.
(21) Garcia-Echeverria, C.; Stamm, C.; Wille, R.; Arz, D.; Gay, B.
Biotinylated phosphotyrosine containing peptides: a valuable
tool for studies on phosphopeptide interactions with SH2 and
PTB domains. Lett. Pept. Sci. 1997, 4, 49-53.
(22) Shi, Z.-D.; Karki, R. G.; Oishi, S.; Worthy, K. M.; Bindu, L. K.;
Dharmawardana, P. G.; Nicklaus, M. C.; Bottaro, D. P.; Fisher,
R. J.; Burke, T. R., Jr. Utilization of a nitrobenzoxadiazole (NBD)
fluorophore in the design of a Grb2 SH2 domain-binding peptide
mimetic. Bioorg. Med. Chem. Lett. 2005, 15, 1385-1388.
(23) Oishi, S.; Karki, R. G.; Shi, Z.-D.; Worthy, K. M.; Bindu, L.;
Chertov, O.; Esposito, D.; Frank, P.; Gillette, W. K.; Maderia,
M. A.; Hartley, J.; Nicklaus, M. C.; Barchi, J. J., Jr.; Fisher, R.
J.; Burke, T. R., Jr. Evaluation of macrocyclic Grb2 SH2 domain-
binding peptide mimetics prepared by ring-closing metathesis
of C-terminal allylglycines with an N-terminal â-vinyl-substi-
tuted phosphotyrosyl mimetic. Bioorg. Med. Chem. 2005, 13,
2431-2438.
(24) van Kempen, G. M.; van Vliet, L. J. Mean and variance of the
ratio estimators used in fluorescence ratio imaging. Cytometry
2000, 39, 300-305.
(25) Shi, Z.-D.; Karki, R. G.; Worthy, K. M.; Bindu, L. K.; Fisher, R.
J.; Burke, T. R., Jr. Utilization of a common pathway for the
synthesis of high affinity macrocyclic Grb2 SH2 domain-binding
peptide mimetics that differ in the stereochemistry of one ring
junction. Chem. Biodiversity 2005, 2, 445-456.
(26) Note: Differences between the current affinity of 4h and the
previously reported value (ref 10, KD ) 93 pM) are discussed in
ref 23.
(27) Furet, P.; Caravatti, G.; Denholm, A. A.; Faessler, A.; Fretz, H.;
Garcia-Escheverria, C.; Gay, B.; Irving, E.; Press, N. J.; Rahuel,
J.; Schoepfer, J.; Walker, C. V. Structure-based design and
synthesis of phosphinate isosteres of phosphotyrosine for incor-
poration into Grb2-SH2 domain inhibitors. Part 1. Bioorg. Med.
Chem. Lett. 2000, 10, 2337-2341.
(28) Smyth, M. S.; Ford, H.; Burke, T. R., Jr. A general-method for
the preparation of benzylic R,R-difluorophosphonic acidss
nonhydrolyzable mimetics of phosphotyrosine. Tetrahedron Lett.
1992, 33, 4137-4140.
(29) Burke, T. R., Jr.; Smyth, M. S.; Otaka, A.; Nomizu, M.; Roller,
P. P.; Wolf, G.; Case, R.; Shoelson, S. E. Nonhydrolyzable
phosphotyrosyl mimetics for the preparation of phosphatase-
resistant SH2 domain inhibitors. Biochemistry 1994, 33, 6490-
6494.
(30) Bradshaw, J. M.; Mitaxov, V.; Waksman, G. Investigation of
phosphotyrosine recognition by the SH2 domain of the Src
kinase. J. Mol. Biol. 1999, 293, 971-985.
(31) Song, Y.-L.; Roller, P. P.; Longa, Y.-Q. Development of L-3-
aminotyrosine suitably protected for the synthesis of a novel
nonphosphorylated hexapeptide with low-nanomolar Grb2-SH2
domain-binding affinity. Bioorg. Med. Chem. Lett. 2004, 14,
3205-3208.
Supporting Information Available: Detailed experi-
mental procedures for the preparation of final products 4a-g
and results from elemental analysis. This material is available
References
(1) Pawson, T.; Gish, G. D.; Nash, P. SH2 domains, interaction
modules and cellular wiring. Trends Cell Biol. 2001, 11, 504-
511.
(2) Shakespeare, W. C. SH2 domain inhibition: a problem solved?
Curr. Opin. Chem. Biol. 2001, 5, 409-415.
(3) Muller, G. Peptidomimetic SH2 domain antagonists for targeting
signal transduction. Top. Curr. Chem. 2001, 211, 17-59.
(4) Feller, S. M.; Tuchscherer, G.; Voss, J. High affinity molecules
disrupting Grb2 protein complexes as a therapeutic strategy for
chronic myelogenous leukaemia. Leuk. Lymphoma 2003, 44,
411-427.
(5) Burke, T. R., Jr.; Gao, Y.; Yao, Z.-J. In Biomedical Chemistry:
Applying Chemical Principles to the Understanding and Treat-
ment of Disease, 1st ed.; Torrence, P. R., Ed.; John Wiley &
Sons: New York, 2000; pp 189-210.
(6) Burke, T. R., Jr.; Yao, Z.-J.; Liu, D.-G.; Voigt, J.; Gao, Y.
Phosphoryltyrosyl mimetics in the design of peptide-based signal
transduction inhibitors. Biopolymers 2001, 60, 32-44.
(7) Burke, T. R., Jr.; Luo, J.; Yao, Z.-J.; Gao, Y.; Milne, G. W. A.;
Guo, R.; Voigt, J. H.; King, C. R.; Yang, D. Monocarboxylic
phosphotyrosyl mimetics in the design of Grb2 SH2 domain
inhibitors. Bioorg. Med. Chem. Lett. 1999, 9, 347-352.
(8) Beaulieu, P. L.; Cameron, D. R.; Ferland, J. M.; Gauthier, J.;
Ghiro, E.; Gillard, J.; Gorys, V.; Poirier, M.; Rancourt, J.; Wernic,
D.; LlinasBrunet, M.; Betageri, R.; Cardozo, M.; Hickey, E. R.;
Ingraham, R.; Jakes, S.; Kabcenell, A.; Kirrane, T.; Lukas, S.;
Patel, U.; Proudfoot, J.; Sharma, R.; Tong, L.; Moss, N. Ligands
for the tyrosine kinase p56lck SH2 domain: Discovery of potent
dipeptide derivatives with monocharged, nonhydrolyzable phos-
phate replacements. J. Med. Chem. 1999, 42, 1757-1766.
(9) Grucza, R. A.; Bradshaw, J. M.; Futterer, K.; Waksman, G. SH2
domains: From structure to energetics, a dual approach to the
study of structure-function relationships. Med. Res. Rev. 1999,
19, 273-293.
(10) Shi, Z.-D.; Lee, K.; Liu, H.; Zhang, M.; Roberts, L. R.; Worthy,
K. M.; Fivash, M. J.; Fisher, R. J.; Yang, D.; Burke, T. R. A novel
macrocyclic tetrapeptide mimetic that exhibits low-picomolar
Grb2 SH2 domain-binding affinity. Biochem. Biophys. Res.
Commun. 2003, 310, 378-383.
(11) Shi, Z.-D.; Lee, K.; Wei, C.-Q.; Roberts, L. R.; Worthy, K. M.;
Fisher, R. J.; Burke, T. R., Jr. Synthesis of a 5-methylindolyl-
containing macrocycle that displays ultrapotent Grb2 SH2
domain-binding affinity. J. Med. Chem. 2004, 47, 788-791.
JM050059M