structures.4 A number of enantioselective synthetic meth-
ods have been reported for chiral R-alkylserines so far,
but only a few are practical.5
Enantioselective Synthetic Method for
r-Alkylserine via Phase-Transfer Catalytic
Alkylation of 2-Phenyl-2-oxazoline-4-
carbonylcamphorsultam
Recently, we reported a new synthetic method for (()-
R-alkylserines by the selective R-alkylation of tert-butyl
2-phenyl-2-oxazoline-4-carboxylate (1) in phase-transfer
catalytic conditions (Scheme 1).6 As a successive study,
the enantioselective version using chiral phase-transfer
catalysts was also disclosed.7 Both works showed that
the phase-transfer catalytic condition is very efficient for
the R-alkylation of the oxazoline-4-carboxylate system.
In this note, we report a new enantioselective synthetic
method for R-alkylserines via phase-transfer catalytic
alkylation8 of the oxazoline-4-carboxylate, possessing
camphorsultam as a chiral auxiliary (4a).
Jihye Lee, Yeon-Im Lee, Myoung Joo Kang,
Yeon-Ju Lee, Byeong-Seon Jeong, Jeong-Hee Lee,
Mi-Jeong Kim, Ji-yeon Choi, Jin-Mo Ku,
Hyeung-geun Park,* and Sang-sup Jew*
Research Institute of Pharmaceutical Science and College of
Pharmacy, Seoul National University, Seoul 151-742, Korea
Received January 31, 2005
The use of a chiral auxiliary, in conjunction with
benzophenone imine glycine derivatives, has been studied
by a number of groups.9 Among them, Oppolzer’s sultam
was mostly employed for the enantioselective synthesis
of R-amino acids (3).9a-c We adapted the camphorsultam
as a chiral auxiliary to tert-butyl 2-phenyl-2-oxazoline-
An enantioselective synthetic method for R-alkylserines by
the phase-transfer catalytic alkylation of 2-phenyl-2-oxazo-
line-4-carbonylcamphorsultam (4a) was developed. The phase-
transfer catalytic R-alkylation of 4a using P2-Et at -78 °C
gave R-alkylation (75∼99%, 90∼97% de), which could be
easily hydrolyzed to R-alkylserines.
(4) (a) Fujita, T.; Inoue, K.; Yamamoto, S.; Ikumoto, T.; Sasaki, S.;
Toyama, R.; Yoneta, M.; Chiba, K.; Hosino, Y.; Okumoto, T. J. Antibiot.
1994, 47, 216. (b) Omura, S.; Fujimoto, T.; Otoguro, K.; Matsuzaki,
K.; Moriguchi, R.; Tanaka, H.; Sasaki, Y. J. Antibiot. 1991, 44, 113.
(c) Omura, S.; Matsuzaki, K.; Fujimoto, T.; Kosuge, K.; Furuya, T.;
Fujita, S.; Nakagawa, A. J. Antibiot. 1991, 44, 117. (d) Yamashita, T.;
lijima, M.; Nakamura, H.; Isshiki, K.; Naganawa, H.; Hattori, S.;
Hamada, M.; Ishizuka, M.; Takeuchi, T. J. Antibiot. 1991, 44, 557. (e)
Kawatsu, M.; Yamashita, T.; Ishizuka, M.; Takeuchi, T. J. Antibiot.
1995, 48, 222.
The enantioselective synthesis of chiral compounds is
an extremely formidable challenge to the synthetic chem-
ist. Chiral R-alkylserines have been regarded as impor-
tant components in the fields of synthetic and medicinal
chemistry.1 As their quaternary carbon centers play an
important role for their preferable conformations in
peptide backbones,2 chiral R-alkylserines have been
frequently employed in the design of new peptidomimetic
drugs.3 In addition, several biologically active natural
products have R-alkylserine moieties or the related
(5) Previous synthetic methods of chiral R-alkylserines are cited in
ref 7.
(6) Park, H.-g.; Lee, J.; Kang, M. J.; Lee, Y.-J.; Jeong, B.-S.; Lee,
J.-H.; Yoo, M.-S.; Kim, M.-J.; Choi, S.-h.; Jew, S.-s. Tetrahedron 2004,
60, 4243.
(7) Jew, S.-s.; Lee, Y.-J.; Lee, J.; Kang, M. J.; Jeong, B.-S.; Lee, J.-
H.; Yoo, M.-S.; Kim, M.-J.; Choi, S.-h.; Ku, J.-M.; Park, H.-g. Angew.
Chem., Int. Ed. 2004, 43, 2382.
* Phone: 82-2-880-8264. Fax: 82-2-872-9129.
(1) (a) Wirth, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 225. (b)
Cativiela, C.; Diaz-de-Villegas, M. D. T. Tetrahedron: Asymmetry 1998,
9, 3517. (c) Cativiela, C.; Diaz-de-Villegas, M. D. T. Tetrahedron:
Asymmetry 2000, 11, 645.
(8) For our recent reports on the enantioselective phase-transfer
catalytic alkylation, see: (a) Jew, S.-s.; Jeong, B.-S.; Yoo, M.-S.; Huh,
H.; Park, H.-g. Chem. Commun. 2001, 1244. (b) Park, H.-g.; Jeong,
B.-S.; Yoo, M.-S.; Park, M.-K.; Huh, H.; Jew, S.-s. Tetrahedron Lett.
2001, 42, 4645. (c) Park, H.-g.; Jeong, B.-S.; Yoo, M.-S.; Lee, J.-H.; Park,
M.-K.; Lee, Y.-J.; Kim, M.-J.; Jew, S.-s. Angew. Chem., Int. Ed. 2002,
41, 3036. (d) Jew, S.-s.; Yoo, M.-S.; Jeong, B.-S.; Park, I. Y.; Park, H.-
g. Org. Lett. 2002, 4, 4245. (e) Park, H.-g.; Jeong, B.-S.; Yoo, M.-S.;
Lee, J.-H.; Park, B.-s.; Kim, M. G.; Jew, S.-s. Tetrahedron Lett. 2003,
44, 3497. (f) Lee, Y.-J.; Lee, J.; Kim, M.-J.; Kim, T.-S.; Park, H.-g.;
Jew, S.-s. Org. Lett. 2005, 7, 1557.
(2) (a) Toniolo, C.; Crisma, M.; Formaggio, F.; Valle, G.; Cavicchioni,
G.; Pre´cigoux, G.; Aubry, A.; Kamphius, J. Biopolymers 1993, 33, 1061.
(b) Karle, I. L.; Rao, R. B.; Prasad, S.; Kaul, R.; Balaram, P. J. Am.
Chem. Soc. 1994, 116, 10355. (c) Formaggio, F.; Pantano, M.; Crisma,
M.; Bonora, G. M.; Toniolo, C.; Kamphius, J. J. Chem. Soc., Perkin
Trans. 2 1995, 1097. (d) Benedetti, E. Biopolymers 1996, 40, 3. (e)
Karle, I. L.; Kaul, R.; Rao, R. B.; Raghothama, S.; Balaram, P. J. Am.
Chem. Soc. 1997, 119, 12048.
(3) (a) Barrett, G. C. Amino Acids, Peptides and Proteins; The
Chemical Society: London, 1980; Vol. 13, p 1. (b) Hunt, S. In Chemistry
and Biochemistry of the Amino Acids; Barrett, G. C., Ed.; Chapman
and Hall: London, 1985; p 55. (c) Richardson, J. S. Biophysik. J. 1992,
63, 1186. (d) Mickos, H.; Sundberg, K.; Luning, B. Acta Chem. Scand.
1992, 46, 989. (e) Gante, J. Angew. Chem., Int. Ed. 1994, 33, 1699.
(9) (a) Josien, H.; Martin, A.; Chassaing, G. Tetrahedron Lett. 1991,
32, 6547. (b) Josien, H.; Chassaing, G. Tetrahedron: Asymmetry 1992,
3, 1351. (c) Josien, H.; Lavielle, S.; Brunissen, A.; Saffroy, M.; Torrens,
Y.; Beaujouan, J.-C.; Glowinski, J.; Chassaing, G. J. Med. Chem. 1994,
37, 1586. (d) Guillena, G.; Najera, C. Tetrahedron: Asymmetry 1998,
9, 3935.
10.1021/jo050197j CCC: $30.25 © 2005 American Chemical Society
Published on Web 04/13/2005
4158
J. Org. Chem. 2005, 70, 4158-4161