C O M M U N I C A T I O N S
Table 2. Rhodium-catalyzed Hydrogenationa of
Methyl-R-acetyl-amino Cinnamate (7) and Dimethylitaconate (8)
cantly improved selectivity (entries 9-11). These preliminary
examples indicate that catalyst/ligand adjustment to a particular
substrate of interest is an important issue, and a combinatorial
approach based on self-assembly is in fact a useful technique to
rapidly identify an optimal catalyst.
In conclusion, the first chiral bidentate phosphorus donor ligand
library based on self-assembly through hydrogen bonding was
generated and screened for rhodium-catalyzed asymmetric hydro-
genation. Bidentate ligand combinations of phosphine/phosphonites
as well as diphosphonite systems were identified that furnished
excellent catalysts performing with enantioselectivities of up to 99%
ee. Application of this and other chiral ligand libraries to asymmetric
catalysis is ongoing in these laboratories.
entry
ligands
substrate
p [bar]
conv. [%]b
ee [%]
1
2
3
4
5
6
7
8
9
(S)-5a/(S)-6a
(S)-5a/(S)-6b
(S)-5a/(S)-5a
(S)-6b/(S)-6b
(S)-5a/(S)-6a
(S)-5a/(S)-6b
(S)-5a/(R)-6a
(S)-5b/(S)-6a
(S)-5b/(S)-6a
(S)-5b/(S)-5b
(S)-6a/(S)-6a
7
7
7
7
8
8
8
8
8
8
8
1
1
1
1
6
6
6
6
quant.
quant.
quant.
33
quant.
quant.
quant.
quant.
quant.
22
90 (R)c
94 (R)c
93 (R)c
73 (R)c
94 (S)d
91 (S)d
90 (S)d
70 (S)d
94 (S)d
38 (S)d
89 (S)d
Acknowledgment. This work was supported by the Fonds der
Chemischen Industrie, the DFG (International Research Training
Group GRK 1038: “Catalysts and catalytic reactions for organic
synthesis”), the Alfried Krupp Award for young university teachers
of the Krupp foundation (to B.B.) and BASF AG. We thank G.
Leonhardt-Lutterbeck for technical, G. Fehrenbach and Dr. R.
Krieger for analytical assistance, and T. Smejkal for preliminary
experiments. M.W. and C.W. are grateful to the Fonds der
Chemischen Industrie for Kekule´ fellowships.
30
30
30
10
11
quant.
a Rh:La:Lb) 1:1.1-1.3:1.1-1.3, Rh:olefin ) 1:100, 24 h. b Determined
by NMR. c Determined by chiral HPLC analysis (column Chiralpak-AD).
d Determined by chiral GC analysis (column G-TA, trifluoracetyl-γ-
cyclodextrin).
catalyst operating with significantly enhanced enantioselectivity
(entry 2). Exchanging (-)-4a with its enantiomer (+)-4a gave an
even better catalyst with 92% ee (entry 4) representing the matched
ligand combination. This result could be improved to 94% ee when
the reaction was run in dichloroethane at 0 °C (entry 5). Any further
variation in the phosphine structure of 4 did not provide any better
catalyst (entries 7-10). However, exchanging the aminopyridylphos-
phine monomer 4 by the corresponding phosphonite system (S)-5a
gave the best catalyst (entry 11). Even at catalyst loadings of 0.1
mol % complete conversion and perfect enantioselectivity (99%
ee, entry 12) was noted. In a control experiment both homocom-
binations for ligands 5a and 6a were tested separately. Both
furnished active hydrogenation catalysts which gave slightly lower
enantioselectivities (entries 13 and 14) than the heterocombination,
which suggests the heterocombination to be not only the prevalent
catalyst but also the kinetically competent species.8 Interestingly,
even the mismatched combination of the two heterodimeric
phosphonites (entry 15) furnished 80% ee. This result is in
agreement with the rather unsymmetrical P-donor arrangement
found in the crystal structure of a square planar platinum complex
of the parent 6-DPPAP/3-DPICon system, reported previously.5
Variation of the ortho-substituents in the BINOL skeleton did not
provide any further improvement (entries 16-21).
A small sublibrary based on the bisphosphonite systems was
screened against asymmetric hydrogenation of methyl-R-acetyl-
amino cinnamate (7) and dimethylitaconate (8) (Table 2). Interest-
ingly, for substrate 7 the optimal ligand combination was found to
be (S)-5a/(S)-6b with 94% ee (entry 2). The same ligand combina-
tion had provided only mediocre results in case of the parent
acetamidoacrylate substrate (Table 1, entry 17). For dimethylita-
conate (8) both (S)-5a/(S)-6a as well as (S)-5b/(S)-6a gave the best
results (94% ee, Table 2, entries 5,9). In the latter case, control
experiments employing the homocombinations clearly showed that
the heterocombination provides a catalyst operating with a signifi-
Supporting Information Available: Ligand syntheses and experi-
mental details. This material is available free of charge via the Internet
References
(1) Gennari, C.; Piarulli, U. Chem. ReV. 2003, 103, 3071-3100.
(2) Reetz, M. T. Angew. Chem., Int. Ed. 2001, 40, 284-310.
(3) (a) Reetz, M. T.; Sell, T.; Meiswinkel, A.; Mehler G. Angew. Chem., Int.
Ed. 2003, 42, 790-793. (b) Reetz, M. T. Chim. Oggi 2003, 21, 5-8. (c)
Reetz, M. T.; Mehler, G. Tetrahedron Lett. 2003, 44, 4593-4596. (d)
Reetz, M. T.; Li, X. Tetrahedron 2004, 60, 9709-9714. (e) Reetz, M.
T.; Li, X. Angew. Chem., Int. Ed. 2005, 44, 2959-2962. (f) Reetz, M. T.,
Li, X. Angew. Chem., Int. Ed. 2005, 44, 2962-2964. (g) Pena, D.;
Minnaard, A. J.; Boogers, J. A. F.; de Vries, A. H. M.; de Vries, J. G.;
Feringa, B. L. Org. Biomol. Chem. 2003, 1, 1087-1089. (h) Pena, D.;
Minnaard, A. J.; de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. Org.
Lett. 2003, 5, 475-478. (i) Pena, D.; Minnaard, A. J.; de Vries, J. G.;
Feringa, B. L. J. Am. Chem. Soc. 2002, 124, 14552-14553. (j) Duursma,
A.; Hoen, R.; Schuppan, J.; Hulst, R.; Minnaard, A. J.; Feringa, B. L.
Org. Lett. 2003, 5, 3111-3113. (k) Monti, C.; Gennari, C.; Piarulli U.
Tetrahedron Lett. 2004, 45, 6859-6862. (l) Gennari, C.; Monti, C.;
Piarulli, U.; de Vries, J. G.; de Vries, A. H. M.; Lefort L. Chemistry 2005,
11, 6701-6717. (m) Monti, C.; Gennari, C.; Piarulli, U. Chem. Commun.
2005, 5281-5283.
(4) (a) Breit, B.; Seiche, W. J. Am. Chem. Soc. 2003, 125, 6608-6609. (b)
Seiche, W.; Schuschkowski, A.; Breit, B. AdV. Synth. Catal. 2005, 347,
1488-1494.
(5) Breit, B.; Seiche, W. Angew. Chem., Int. Ed. 2005, 44, 1640-1643.
(6) For alternative approaches to self-assembled ligand/catalyst libraries see:
Breit, B. Angew. Chem., Int. Ed. 2005, 44, 6816-6825. See also: (a)
Takacs, J. M.; Reddy, D. S.; Moteki, S. A.; Wu, D.; Palencia, H. J. Am.
Chem. Soc. 2004, 126, 4494-4495. (b) Wilkinson, M. J.; van Leeuwen,
P. W. N. M.; Reek, J. N. H. Org. Biomol. Chem. 2005, 3, 2371-2383.
(c) Slagt, V. F.; Ro¨der, M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.;
Reek, J. N. H. J. Am. Chem. Soc. 2004, 126, 4056-4057. (d) Slagt, V.
F.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Angew. Chem., Int. Ed.
2003, 42, 5619-5623. (e) Slagt, V. F.; van Leeuwen, P. W. N. M.; Reek,
J. N. H. Chem. Commun. 2003, 2474-2475.
(7) Experimental procedures; see Supporting Information.
(8) Binol-based monodentate phosphonite ligands have been reported previ-
ously as excellent ligands for asymmetric hydrogenation Claver, C.;
Fernandez, E.; Gillon, A.; Heslop, K.; Hyett,D. J.; Martorell, A.; Orpen,
A. G.; Pringle, P. G. Chem. Commun. 2000, 961-962; Reetz, M. T.; Sell,
T. Tetrahedron Lett. 2000, 41, 6333-6336; Reetz, M. T.; Mehler, G.
Angew. Chem., Int. Ed. 2000, 39, 3889-3890.
JA058202O
9
J. AM. CHEM. SOC. VOL. 128, NO. 13, 2006 4189