X. Lu, R. Bittman / Tetrahedron Letters 46 (2005) 3165–3168
3167
(CDCl3) d 0.86–0.95 (m, 9H), 1.25–1.35 (m, 24H), 1.62–
1.72 (m, 6H), 1.82 (s, 1H), 3.31 (m, 1H), 3.39 (m, 1H), 3.62
(dd, 1H, J = 8.0, 0.4 Hz), 4.08 (dd, 1H, J = 8.0, 6.4 Hz),
4.40 (m, 1H), 4.67 (d, 1H, J = 11.2 Hz), 4.92 (d, 1H,
J = 11.2 Hz), 7.26–7.37 (m, 5H); 13C NMR (CDCl3) d
8.12, 8.31, 14.1, 22.7, 25.9, 29.3, 29.6, 29.7, 31.9, 34.8, 68.2,
72.1, 74.1, 78.3, 81.2, 113.2, 127.8, 128.3, 128.4, 138.4.
Also obtained was 168 mg of 8 (7%): Rf 0.58 (hexane/
Acknowledgements
This work was supported in part by USPHS Grant
HL16660.
References and notes
25
EtOAc 3:1); ½aꢂD +17.0 (c 0.37, CHCl3); 1H NMR
1. (a) Karlsson, K.-A.; Martensson, E. Biochim. Biophys.
Acta 1968, 152, 230–233; (b) Carter, H. E.; Hirschberg, C.
B. Biochemistry 1968, 7, 2291–2300; (c) Bouhours, D.;
Bouhours, J.-F. Biochim. Biophys. Acta 1984, 794, 169–
171; (d) Okabe, K.; Keenan, R. W.; Schmidt, G. Biochem.
Biophys. Res. Commun. 1986, 31, 137–143; (e) Higuchi, R.;
Kagoshima, M.; Komori, T. Liebigs Ann. Chem. 1990,
659–663.
(CDCl3) d 0.86–0.94 (m, 9H), 1.25–1.35 (m, 24H), 1.48–
1.70 (m, 6H), 2.48 (m, 1H), 3.42 (m, 1H), 3.65 (m, 1H),
3.75 (m, 1H), 3.99 (m, 1H), 4.30 (m, 1H), 4.66 (d, 1H,
J = 11.2 Hz), 4.76 (d, 1H, J = 11.2 Hz), 7.25–7.37 (m, 5H);
13C NMR (CDCl3) d 8.14, 8.31, 14.1, 22.7, 25.9, 29.3, 29.6,
29.7, 31.9, 33.1, 66.4, 72.1, 74.1, 78.3, 81.3, 113.1, 127.4,
127.8, 128.3, 138.4.
11. For an example of a chelation-controlled Grignard
addition, see: (a) Ndakala, A. J.; Hashemzadeh, M.; So,
R. C.; Howell, A. R. Org. Lett. 2002, 4, 1719–1722; (b)
For a review, see: Reetz, M. T. Angew. Chem., Int. Ed.
Engl. 1984, 23, 556–569.
2. For reviews, see: (a) Dickson, R. C.; Lester, R. L. Biochim.
Biophys. Acta 2003, 1583, 13–25; (b) Jenkins, G. M. Cell.
Mol. Life Sci. 2003, 60, 701–710.
3. Park, M. T.; Choi, J. A.; Kim, M. J.; Um, H. D.; Bae, S.;
Kang, C. M.; Cho, C. K.; Kang, S.; Chung, H. Y.; Lee, Y.
S.; Lee, S. J. J. Biol. Chem. 2003, 278, 50624–50634.
4. (a) Wertz, P. W.; Miethke, M. C.; Long, S. A.; Strauss, J.
S.; Downing, D. T. J. Invest. Dermatol. 1985, 84, 410–412;
(b) Motta, S.; Monti, M.; Sesana, S.; Caputo, R.; Carelli,
S.; Ghidoni, R. Biochim. Biophys. Acta 1993, 1182, 147–
151; (c) Ponec, M.; Weerheim, A.; Lankhorst, P.; Wertz,
P. J. Invest. Dermatol. 2003, 120, 581–588.
25
12. Data for (ꢁ)-10: Rf 0.24 (hexane/EtOAc 3:1); ½aꢂD ꢁ11.6
(c 1.08, CHCl3); 1H NMR (CDCl3) d 0.88 (t, 3H,
J = 6.8 Hz), 1.33–1.71 (m, 26H), 2.60 (s, 2H), 3.49 (m,
1H), 3.60 (m, 3H), 3.78 (m, 1H), 4.56 (m, 3H), 4.71 (d, 1H,
J = 11.2 Hz), 7.28–7.36 (m, 10H); 13C NMR (CDCl3) d
14.2, 22.7, 26.0, 29.4, 29.6, 30.4, 32.0, 64.3, 71.3, 72.9, 74.2,
77.3, 79.6, 127.8, 128.0, 128.1, 128.2, 128.5, 128.6, 137.9,
138.0.
5. (a) Rogers, P. R.; Matsumoto, A.; Naidenko, O.; Kro-
nenberg, M.; Mikayama, T.; Kato, S. J. Immunol. Meth-
ods 2004, 285, 197–214; (b) Lin, H.; Nieda, M.; Nicol, A.
J. Eur. J. Immunol. 2004, 34, 2664–2671.
6. (a) Lester, R. L.; Dickson, R. C. Adv. Lipid Res. 1993, 26,
253–274; (b) Fankhauser, C.; Homans, S. W.; Thomas-
Oates, J. E.; McConville, M. J.; Desponds, C.; Conzel-
mann, A.; Ferguson, M. A. J. Biol. Chem. 1993, 268,
26365–26374; (c) Fontaine, T.; Magnin, T.; Melhert, A.;
Lamont, D.; Latge, J.-P.; Ferguson, M. A. Glycobiology
2003, 13, 169–177.
13. (a) He, L.; Wanunu, M.; Byun, H. S.; Bittman, R. J.
Org. Chem. 1999, 64, 6049–6055; (b) For a postulated
mechanism to account for the conversion of a 1,2-diol to
a 2-azido-1-ol with inversion, see: Scheme 1 of Ref. 13a
and Mathieu-Pelta, I.; Evans, S. A., Jr. J. Org. Chem.
1992, 57, 3409–3413; (c) Data for (ꢁ)-4: Rf 0.58 (hexane/
25
EtOAc 3:1); ½aꢂD ꢁ2.4 (c 1.15, CHCl3); Rf 0.70 (hexane/
1
EtOAc 3:1); H NMR (CDCl3) d 0.88 (t, 3H, J = 6.4 Hz),
1.33–1.51 (m, 24H), 1.62 (m, 2H), 1.91 (br s, 1H), 3.56
(m, 1H), 3.68 (m, 2H), 3.87 (m, 2H), 4.59 (m, 2H), 4.65
(m, 2H), 7.28–7.36 (m, 10H); 13C NMR (CDCl3) d 14.2,
22.7, 25.9, 29.4, 29.6, 30.4, 32.0, 62.5, 63.3, 72.6, 74.4,
79.2, 79.8, 127.8, 128.0, 128.1, 128.2, 128.5, 128.6, 137.7,
138.2.
7. For a recent review of syntheses of phytosphingosine, see:
Howell, A. R.; Ndakala, A. J. Curr. Org. Chem. 2002, 6,
365–391.
8. Lu, X.; Byun, H.-S.; Bittman, R. J. Org. Chem. 2004, 69,
5433–5438.
14. Data for (ꢁ)-11: Rf 0.29 (hexane/EtOAc 1:1); mp 129.5–
25
131.2 ꢁC; ½aꢂD ꢁ7.9 (c 0.35, CHCl3), 1H NMR (CDCl3)
9. For the use of 2-azido-3,4-O-dibenzyl PHS (4) in the
preparation of galactosylphytoceramides, see: (a) Bernd,
K.; Thomas, G. M.; Richard, R. S. Eur. J. Org. Chem.
1998, 291–298; (b) Valeria, C.; Ernesto, F.; Concetta, I.;
Alfonso, M. Tetrahedron 2002, 58, 369–375; (c) Lucia, B.;
Valeria, C.; Ernesto, F.; Alfonso, M.; Elisabetta, A.;
Silvia, P.; Donatella, T. Eur. J. Org. Chem. 2004, 468–473;
(d) Fan, G. T.; Pan, Y. S.; Lu, K. C.; Cheng, Y. P.; Lin,
W. C.; Lin, S.; Lin, C. H.; Wong, C. H.; Fang, J. M.; Lin,
C. C. Tetrahedron 2005, 61, 1855–1862.
d 0.88 (t, 3H, J = 6.4 Hz), 1.33–1.71 (m, 33H), 1.62 (m,
2H), 3.32 (m, 1H), 3.51 (m, 1H), 3.72 (m, 1H), 4.06 (m,
1H), 5.21 (m, 1H); 13C NMR (CDCl3) d 14.1, 22.7, 28.3,
29.4, 29.6, 32.0, 53.5, 61.9, 69.7, 72.8, 80.4, 157.3.
25
15. Data for (ꢁ)-12: Rf 0.69 (hexane/EtOAc 3:1); ½aꢂD ꢁ15.0
1
(c 1.33, CHCl3); H NMR (CDCl3) d 0.86–0.93 (m, 9H),
1.23–1.55 (m, 24H), 1.60–1.69 (m, 6H), 3.67 (m, 1H), 3.77
(m, 1H), 4.01 (m, 1H), 4.25 (m, 1H), 4.75 (d, 1H,
J = 11.2 Hz), 4.79 (d, 1H, J = 11.2 Hz), 5.04 (m, 1H),
7.26–7.37 (m, 5H), 8.14 (d, 2H, J = 7.2 Hz), 8.29 (d, 2H,
J = 7.2 Hz); 13C NMR (CDCl3) d 8.14, 8.23, 14.1, 22.7,
25.7, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9, 66.7, 73.9, 76.2, 77.6,
80.7, 113.4, 123.5, 127.7, 128.1, 128.3, 130.8, 135.5, 138.2,
150.6, 164.2.
10. Experimental details for the addition of aldehyde 6 to
C14H29MgBr and the isolation of 7 and 8: To a solution of
aldehyde 6 (1.39 g, 5.0 mmol) in 50 mL of Et2O at 0 ꢁC
was quickly added freshly prepared C14H29MgBr
(15 mmol) in 50 mL of Et2O. The reaction mixture was
stirred at 0 ꢁC for 3 h, then warmed to room temperature
and stirred overnight. The reaction mixture was quenched
by adding 50 mL of water, the organic phase was
separated, and the aqueous phase was extracted with
Et2O (3 · 20 mL). The organic layer was dried (Na2SO4),
and the solvent was removed by vacuum evaporation. The
residue was purified by chromatography (hexane/EtOAc
3:1) to give 1.61 g of 7 (68%) as a colorless oil: Rf 0.54
25
16. Data for (ꢁ)-14: Rf 0.24 (hexane/EtOAc 3:1); ½aꢂD ꢁ9.8 (c
1.39, CHCl3); 1H NMR (CDCl3)
d 0.88 (t, 3H,
J = 6.8 Hz), 1.33–1.71 (m, 26H), 2.51 (s, 1H), 3.34 (m,
1H), 3.53 (m, 1H), 3.65 (m, 3H), 3.87 (m, 1H), 4.54 (m,
2H), 4.63 (d, 1H, J = 11.2 Hz), 4.71 (d, 1H, J = 11.2 Hz),
7.28–7.36 (m, 10H); 13C NMR (CDCl3) d 14.1, 22.5, 25.6,
29.4, 29.6, 30.8, 31.9, 63.7, 71.4, 72.7, 73.6, 77.4, 79.7,
127.8, 128.0, 128.1, 128.2, 128.5, 128.6, 137.9, 138.0.
17. Data for azido alcohol (ꢁ)-3: Rf 0.58 (hexane/EtOAc 3:1);
25
25
½aꢂD ꢁ3.71 (c 4.15, CHCl3); Rf 0.70 (hexane/EtOAc 3:1);
(hexane/EtOAc 3:1); ½aꢂD +18.6 (c 2.36, CHCl3); 1H NMR