S. Auvin et al. / Bioorg. Med. Chem. Lett. 16 (2006) 1586–1589
1589
3
2,5
2
1098; (c) Zatz, M.; Starling, A. N. Eng. J. Med. 2005, 352,
2413.
Predicted pRatio
2. Chabrier, P.-E.; Pignol, B.; Auvin, S. PCT Int. Appl. WO
0240016, 2002; . Chem. Abstr. 2002, 136, 380140.
3. (Nonexhaustive list): (a) Li, Z.; Patil, G. S.; Golubski, Z.
E.; Hori, H.; Tehrani, K.; Foreman, J. E.; Eveleth, D. D.;
Bartus, R. T.; Powers, J. C. J. Med. Chem. 1993, 36, 3472;
(b) Li, Z.; Ortega-Vilain, A.-C.; Patil, G. S.; Chu, D.-L.;
Foreman, J. E.; Eveleth, D. D.; Powers, J. C. J. Med.
Chem. 1996, 39, 4089; (c) Lubisch, W.; Hofmann, H. P.;
Treiber, H. J.; Moller, A. Bioorg. Med. Chem. Lett. 2000,
10, 2187; (d) Josef, K. A.; Kauer, F. W.; Bihovsky, R.
Bioorg. Med. Chem. Lett. 2001, 11, 2615; (e) Lubisch, W.;
Moller, A. Bioorg. Med. Chem. Lett. 2002, 12, 1335; (f)
Lubisch, W.; Beckenbach, E.; Bopp, S.; Hofmann, H.-P.;
Kartal, A.; Kaestel, C.; Lindner, T.; Metz-Garrecht, M.;
Reeb, J.; Regner, F.; Vierling, M.; Moeller, A. J. Med.
Chem. 2003, 46, 2404; (g) Gil-Parrado, S.; Assfalg-Mach-
leidt, I.; Fiorino, F.; Deluca, D.; Pfeiler, D.; Schaschke,
N.; Moroder, L.; Machleidt, W. Biol. Chem. 2003, 384,
395; (h) Bihovsky, R.; Tao, M.; Mallamo, J. P.; Wells, G.
J. Bioorg. Med. Chem. Lett. 2004, 14, 1035.
4. Auvin, S.; Pignol, B.; Navet, E.; Pons, D.; Marin, J.-G.;
Bigg, D.; Chabrier, P.-E. Bioorg. Med. Chem. Lett. 2004,
14, 3825.
5. Auvin, S.; Chabrier de Lassauniere P.-E. PCT Int. Appl.
WO 2005/056551 A2, 2005; . Chem. Abstr. 2005, 143,
44075.
6. Chan, C.; Yin, H.; Garforth, J.; McKie, J. H.; Jaouhari,
R.; Speers, P.; Douglas, K. T.; Rock, P. J.; Yardley, V.;
Croft, S. L.; Fairlamb, A. H. J. Med. Chem. 1998, 41, 148.
7. Zupancic, B. Ger. Offen. 2702714, 1978; . Chem. Abstr.
1978, 89, 180029.
1,5
1
0,5
0
-1,50
-1,00
-0,50
0,00
0,50
1,00
1,50
2,00
2,50
3,00
pRatio
-0,5
-1
-1,5
Figure 1. Predicted pRatio versus experimental pRatio of compounds
6d-01 to 6d-12.
which describe the behavior of these molecules in the
cellular assay. For this purpose 3D coordinates of
molecular structures were generated by Corina 3.2
(Molecular Networks GmbH) using the ‘write hydrogen
atoms’ and the ‘neutralize formal charges’ options. The
resulting 3D structures were then used to generate
molecular descriptors such as rotors15 and FISA16 using
QikProp 2.2 (Schrodinger) (Table 2). Multiple linear
regression analysis highlighted the significance of the
number of rotors and the polar surface area (FISA) of
the molecules. The predicted pRatio could thus be de-
scribed as a combination of these two descriptors:
8. Messer, M.; Farge, D.; Guyonnet, J. C.; Jeanmart, C.;
Julou, L. Arzneim. Forsch. 1969, 19, 1193.
predicted pRatio ¼ ꢁ6:479 þ ð0:987Þ ꢂ rotor ꢁ ð0:028Þ
ꢂ FISA.
9. The carboxylic acid was prepared by treatment with LiOH
of the corresponding ethyl ester described in: Yu, M. J.;
McCowan, J. R.; Thrasher, K. J.; Keith, P. T.; Luttman,
C. A.; Ho, P. P. K.; Towner, R. D.; Bertsch, B.; Horng, J.
S.; Um, L. S.; Phebus, L. A.; Saunders, R. D. J. Med.
Chem. 1992, 35, 716.
10. Meyer, S. L.; Bozyczko-Coyne, D.; Mallya, S. K.; Spais,
C. M.; Bihovsky, R.; Kawooya, J. K.; Lang, D. M.; Scott,
R. W.; Siman, R. Biochem. J. 1996, 314, 511.
11. Wang, K. K. W.; Nath, R.; Raser, K. J.; Hajimohamma-
dreza, I. Arch. Biochem. Biophys. 1996, 331, 208.
12. Esterbauer, H.; Schaur, R. J.; Zollner, H. Free Radical
Biol. Med. 1991, 11, 81.
13. Iqbal, M.; Messina, P. A.; Freed, B.; Das, M.; Chatterjee,
S.; Tripathy, R.; Tao, M.; Josef, K. A.; Dembofsky, B.;
Dunn, D.; Griffith, E.; Siman, R.; Sedanhi, S. E.; Biazzo,
W.; Bozyczko-Coyne, D.; Meyer, S. L.; Ator, M. A.;
Bihovsky, R. Bioorg. Med. Chem. Lett. 1997, 7, 539.
14. Sgaragli, G. P.; Valoti, M.; Gorelli, B.; Fusi, F.; Palmi,
M.; Mantovani, P. Br. J. Pharmacol. 1993, 110, 369.
15. Number of nontrivial (not CX3), nonhindered (not
alkene, amides, and small ring) rotatable bonds in the
molecule.
The excellent correlation and predictability of this mod-
el, q2 = 0.846 (cross-validated r2), between the predicted
pRatio and the experimental pRatio (Table 2) are illus-
trated in Figure 1.
Our study has led to the design of a series of dipeptides
which are potent calpain and LPO inhibitors. Some of
them, 6d-05 and 6d-08, show strong inhibitory potencies
in cellular assays with IC50s below 1lM and with a lim-
ited (4- to 6-fold) decrease in cellular activity compared
to enzymatic inhibition. With the help of a calculation
approach, we were able to demonstrate that, in this ser-
ies of compounds, the polar surface area and the num-
ber of rotors of a molecule adequately described their
performance in this cellular calpain inhibition assay.
References and notes
16. Hydrophilic component of the solvent accessible surface
area.
1. (a) Donkor, I. O. Curr. Med. Chem. 2000, 7, 1171; (b)
Branca, D. Biochem. Biophys. Res. Commun. 2004, 322,