ORGANIC
LETTERS
2005
Vol. 7, No. 10
1907-1910
Synthesis of Cationic Water-Soluble
Light-Harvesting Dendrimers
Shu Wang,† Janice W. Hong,‡ and Guillermo C. Bazan*,‡
Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of
Sciences, Beijing 100080, P. R. China, and Departments of Materials and Chemistry &
Biochemistry, Institute for Polymers and Organic Solids, UniVersity of California,
Santa Barbara, California 93106-9510
Received November 11, 2004
ABSTRACT
Four generations of phenylenefluorene (1F)- and phenylenebis(fluorene) (2F)-terminated polyamidoamine (PAMAM) dendrimers were synthesized
by coupling activated esters with commercially available PAMAM precursors. Treatment of Boc-terminated pendant groups on the optically
active units with 3 M HCl in dioxane yields cationic water-soluble dendrimers. Fluorescence resonance energy transfer (FRET) experiments
with the cationic dendrimers as the donor and double stranded DNA containing a fluorescein label as the acceptor reveal cooperative optical
behavior.
Dendrimers are hyperbranched organic macromolecules with
well-defined three-dimensional architectures and a large
number of terminal groups that can be varied to control
properties such as size, molecular weight, topology, and
surface reactivity.1 They can be used to generate a highly
dense collection of chromophores with overall properties
similar to those of natural photosynthetic systems, which
absorb light and very efficiently transfer the resulting
excitations to lower energy sites.2 Recent interest has grown
in utilizing the light-harvesting (or antenna-like) properties
of dendrimers to achieve sensory signal amplification in the
presence of suitable energy or electron acceptors.3
reporter dyes has been used for devising strand-specific DNA
or RNA detection methods.4,5 The positive charges in these
conjugated polyelectrolytes are important for water solubility
and for orchestrating electrostatic interactions with the
negatively charged DNA (or RNA).6 However, structural
uncertainties in these polymers (i.e. molecular weight
distribution, variations in average molecular weight, and
(2) (a) Newkome, G. R.; Moorefield, C. N.; Vo¨gtle, F. Dendrimers and
Dendrons; Wiley-VCH: Weinheim, Germany, 2001. (b) Gilat, S. L.;
Adronov, A.; Fre´chet, J. M. J. Angew. Chem., Int. Ed. Engl. 1999, 38,
1422. (c) Balzani, V.; Campagna, S.; Denti, G.; Juris, A.; Serroni, S.;
Venturi, M. Acc. Chem. Res. 1998, 31, 26. (d) Maus, M.; De, R.; Lor, M.;
Weil, T.; Mitra, S.; Wiesler, U.-M.; Herrmann, A.; Hofkens, J.; Vosch, T.;
Mu¨llen, K.; De Schryver, F. C. J. Am. Chem. Soc. 2001, 123, 7668. (e)
Devadoss, C.; Bharathi, P.; Moore, J. S. J. Am. Chem. Soc. 1996, 118,
9635. (f) Yeow, E. K. L.; Ghiggino, K. P.; Reek, J. N. H.; Crossley, M. J.;
Bosman, A. W.; Schenning, A. P. H. J.; Meijer, E. W. J. Phys. Chem. B
2000, 104, 2596.
Light-harvesting properties and efficient fluorescence
energy transfer (FRET) can also be attained with water-
soluble cationic conjugated polymers and oligomers.4 The
resulting optical amplification of emission intensities from
(3) (a) Adronov, A.; Fre´chet, J. M. J. Chem. Commun. 2000, 1701. (b)
Schenning, A. P. H. J.; Peeters, E.; Meijer, E. W. J. Am. Chem. Soc. 2000,
122, 4489. (c) Hahn, U.; Gorka, M.; Vo¨gtle, F.; Vicinelli, V.; Ceroni, P.;
Maestri, M.; Balzani, V. Angew. Chem., Int. Ed. 2002, 41, 3595. (d) Balzani,
V.; Ceroni, P.; Gestermann, S.; Kauffmann, C.; Gorka, M.; Vo¨gtle, F. Chem.
Commun. 2000, 853.
† Chinese Academy of Sciences.
‡ University of California.
(1) (a) Tomalia, D. A.; Naylor, A. M.; Goddard, W. A., III Angew. Chem.,
Int. Ed. Engl. 1990, 29, 138. (b) Bosman, A. W.; Janssen, H. M.; Meijer,
E. W. Chem. ReV. 1999, 99, 1665. (c) Ballauff, M. Top. Curr. Chem. 2001,
212, 177. (d) Fre´chet, J. M. J.; Tomalia, D. A. Dendrimers and Other
Dendritic Polymers; Wiley: New York, 2001.
(4) Gaylord, B. S.; Heeger, A. J.; Bazan, G. C. Proc. Natl. Acad. Sci.
U.S.A. 2002, 99, 10954.
10.1021/ol047674p CCC: $30.25
© 2005 American Chemical Society
Published on Web 04/12/2005