M. N. Paddon-Row, M. S. Sherburn et al.
acid. An earlier reference (E. Abushanab, M. Bessodes, K. Antona-
kis, Tetrahedron Lett. 1984, 25, 3841–3844) outlines the synthesis of
the corresponding methyl ester of 7. Although both of these papers
refer to the preparation of compound 7, neither of them report its
physical and spectroscopic properties.
[36] All TSs were fully optimized and characterized by harmonic fre-
quency calculations. The Gaussian 98 package was used for all calcu-
lations: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomer-
y Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D.
Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone,
M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clif-
ford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Moroku-
ma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G.
Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaro-
mi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B.
Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M.
Head-Gordon, E. S. Replogle, J. A. Pople, in Gaussian 98, Revision
A.11, Gaussian, Inc., Pittsburgh PA, 2001.
[21] S. Saito, T. Ishikawa, A. Kuroda, K. Koga, T. Moriwake, Tetrahedron
1992, 48, 4067–4086.
[22] N. Smith, P. Kocienski, S. Street, Synthesis 1996, 652.
[23] a) M. W. Bredenkamp, J. S. Lesch, J. S. Malherbe, E. M. Molnar,
D. F. Schneider, Tetrahedron Lett. 1980, 21, 4199–4202; b) R. W.
Lang, H.-J. Hansen, Org. Synth. 1984, 62, 202–209.
[24] R. Annunziata, M. Cinquini, F. Cozzi, C. Gennari, L. Raimondi, J.
Org. Chem. 1987, 52, 4674–4681.
[25] K. Sato, S. Mizuno, M. Hirayama, J. Org. Chem. 1967, 32, 177.
[26] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155–4156.
[27] Wadsworth–Horner–Emmons reaction between aldehyde 12 and the
lithium salt of phosphonate 17 gave the (E,E)-dienoate ester in a
similarly disappointing yield.
[28] CCDC-243538 (34a), CCDC-243536 (37), CCDC-244532 (38),
CCDC-243539 (39), and CCDC-243537 (40) contain the supplemen-
tary crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre
[29] We use the Seebach–Prelog descriptor like to describe a cycloadduct
resulting from the approach of the dienophile to the re face of the
diene with an allylic stereocenter of R configuration. The term
unlike refers to si/R and re/S combinations, see: a) D. Seebach, V.
Prelog, Angew. Chem. 1982, 94, 696; Angew. Chem. Int. Ed. Engl.
1982, 21, 654–660. For consistent use of this convention, the priori-
ties of the groups about the allylic stereocenter are assigned such
that the sp2 carbon atom has a higher priority than the sp3 carbon
atom, see: b) R. Tripathy, R. W. Franck, K. D. Onan, J. Am. Chem.
Soc. 1988, 110, 3257–3262; c) W. Adam, J. Glaser, K. Peters, M.
Prein, J. Am. Chem. Soc. 1995, 117, 9190–9193.
[37] Each TS was fully optimized—that is, no geometrical constraints
were imposed—and characterized by carrying out a harmonic vibra-
tional frequency calculation. In principle, each TS corresponding to
ꢀ
a particular conformation about the C* C1 bond (torsional angle
ꢀ
y) is capable of exhibiting conformational isomerism about the C*
O bond (torsional angle q), there being three such isomers. These
three C*–O conformational isomeric TSs were not fully optimized
for reasons of computational economy. Instead, for each TS which
was optimized with respect to y, a potential energy curve was calcu-
lated with respect to q. For each value of q of this scan, the geome-
try of the molecule was fully optimized with the exception that the
forming bonds between the diene and dienophile were frozen at the
values corresponding to those typically found for this type of IMDA
TS. Such a potential energy scan resulted in the location of three
energy minima corresponding to three different values of q. The ge-
ometry corresponding to the lowest energy minimum was then fully
optimized—with no geometrical constraints imposed—to give the
TS corresponding to that value of q. Although the TSs correspond-
ing to the other two values of q were neither optimized, nor further
considered, our procedure almost certainly guarantees that we have
located the lowest energy TS conformation for that particular value
of y. The fact that we obtain such good agreement between the ex-
perimental and computational selectivities strongly suggests that our
procedure is a valid one.
[30] For a review on stereochemical control using silicon-containing com-
pounds, see: I. Fleming, A. Barbero, D. Walter, Chem. Rev. 1997, 97,
2063–2192.
[31] For seminal investigations into IMDA reactions of this general type,
see: J. D. White, B. G. Sheldon, J. Org. Chem. 1981, 46, 2273–2280.
[32] For synthetic studies on IMDA reactions of pentadienyl maleates
and fumarates, see: a) S. D. Burke, S. M. Smith Strickland, T. H.
Powner, J. Org. Chem. 1983, 48, 454–459; b) P. R. Jenkins, K. A.
Menear, P. Barraclough, M. S. Nobbs, J. Chem. Soc. Chem.
Commun. 1984, 1423–1424; c) P. Magnus, C. Walker, P. R. Jenkins,
K. A. Menear, Tetrahedron Lett. 1986, 27, 651–654; d) M. K. Eberle,
H. P. Weber, J. Org. Chem. 1988, 53, 231–235; e) J. F. He, Y. L. Wu,
Tetrahedron 1988, 44, 1933–1940; f) M. J. Batchelor, J. M. Mellor, J.
Chem. Soc. Perkin Trans. 1 1989, 985–995; g) J. Becher, H. C. Niel-
sen, J. P. Jacobsen, O. Simonsen, H. Clausen, J. Org. Chem. 1988, 53,
1862–1871; h) M. Toyota, Y. Wada, K. Fukumoto, Heterocycles
1993, 35, 111–114; i) L. Berthon, A. Tahri, D. Uguen, Tetrahedron
Lett. 1994, 35, 3937–3940; j) K. Takatori, K. Hasegawa, S. Narai, M.
Kajiwar, Heterocycles 1996, 42, 525–528; k) S. Arseniyadis, R.
Brondi-Alves, D. V. Yashunsky, P. Potier, L. Toupet, Tetrahedron
1997, 53, 1003–1014; l) T. N. Cayzer, M. N. Paddon-Row, D. Moran,
A. D. Payne, M. S. Sherburn, P. Turner, J. Org. Chem. submitted.
[33] The IMDA reaction of the corresponding 2-butynoate ester was
thwarted by cycloadduct aromatization under the reaction condi-
tions.
[38] a) S. L. Shambayati, J. F. Blake, S. G. Wierschke, W. Jorgenson, S. L.
Schreiber, J. Am. Chem. Soc. 1990, 112, 697–703; b) B. W. Gung,
J. P. Melnick, M. A. Wolf, A. King, J. Org. Chem. 1995, 60, 1947–
1951.
[39] K. N. Houk, S. R. Moses, Y.-D. Wu, N. G. Rondan, V. Jꢃger, R.
Schohe, F. R. Fronczek, J. Am. Chem. Soc. 1984, 106, 3880–3882.
[40] P. J. Ainsworth, D. Craig, J. C. Reader, A. M. Z. Slawin, A. J. P.
White, D. J. Williams, Tetrahedron 1995, 51, 11601–11622.
[41] A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–
926.
ꢀ
[42] The out-of-plane C O/C=C conformation is preferred for allylic al-
cohol benzoates, see: N. C. Gonnella, K. Nakanishi, V. S. Martin,
K. B. Sharpless, J. Am. Chem. Soc. 1982, 104, 3775–3776.
[43] J. W. Coe, W. R. Roush, J. W. Coe, W. R. Roush, J. Org. Chem. 1989,
54, 915–930.
[44] G. L. Lange, C. Gottardo, Synth. Commun. 1990, 20, 1473–1479.
[45] C. Chatgilialoglu, Acc. Chem. Res. 1992, 25, 188–194.
[46] a) D. L. J. Clive, D. R. Cheshire, L. Set, J. Chem. Soc. Chem.
Commun. 1987, 353–355; b) D. L. J. Clive, H. W. Manning, T. L. B.
Boivin, M. H. D. Postema, J. Org. Chem. 1993, 58, 6857–6873.
[47] W. A. Ayer, L. M. Browne, Tetrahedron 1981, 37, 2199–2248.
[34] M. N. Paddon-Row, N. G. Rondan, K. N. Houk, J. Am. Chem. Soc.
1982, 104, 7162–7166.
[35] K. N. Houk, M. N. Paddon-Row, N. G. Rondan, Y. D. Wu, F. K.
Brown, D. C. Spellmeyer, J. T. Metz, Y. Li, R. J. Loncharich, Science
1986, 231, 1108–1117.
Received: November 28, 2004
Published online: February 24, 2005
2536
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2005, 11, 2525 – 2536