X. Hong et al. / Tetrahedron Letters 47 (2006) 2409–2412
2411
no improvement in the overall yield of the desulfony-
lated indole 14. However, in the presence of 1.0 equiv
of n-Bu3SnH, the photoreaction of 13d afforded indole
14d in 96% yield (based on recovered starting material)
with no signs of the rearranged aryl sulfones 15d and
16d. The more highly activated tin hydride (weaker
Sn–H bond) allows for capture of the sulfonyl radical
thereby suppressing attack at the ortho- and para-
positions.
Further studies directed toward the synthesis of the
kopsifoline alkaloid family are currently underway and
will be described in a forthcoming publication.
Acknowledgments
We appreciate the financial support provided by the
National Institutes of Health (GM 059384) and the
National Science Foundation (Grant CHE-0132651).
More than likely, the photodesulfonylation reaction can
be attributed to a photoinduced electron transfer as out-
lined in Scheme 4. Amines are well known to undergo
such a transfer with electronically excited carbonyl
groups.20 The reaction is initiated by single electron
transfer from NEt3 to the electronically excited indole
with formation of the radical cation of triethylamine
(18) and the radical anion of the indole (17). Formation
of 17 weakens the N-SO2Ph bond and facilitates bond
cleavage.21 Proton transfer from the radical cation of
NEt3 (18) would lead to the observed desulfonylated in-
dole 14. In competition with this process, the phen-
ylsulfonyl radical can undergo addition to the
aromatic framework of the indole anion 19 producing
radical anion 20 as a transient species. A subsequent
electron transfer from 20 to 18 would afford the
rearranged indole 15 (and/or 16). In the presence of
n-Bu3SnH, the phenylsulfonyl radical undergoes bimole-
cular hydrogen atom transfer and is no longer available
to add to the aromatic ring.22
References and notes
1. (a) Kam, T.-S.; Choo, Y.-M. Tetrahedron Lett. 2003, 44,
1317; (b) Kam, T. S.; Choo, Y. M. Phytochemistry 2004,
65, 2119; (c) Kam, T. S.; Choo, Y. M. Helv. Chim. Acta
2004, 87, 991.
2. (a) Padwa, A.; Carter, S. P.; Nimmesgern, H. J. Org.
Chem. 1986, 51, 1157; (b) Padwa, A.; Carter, S. P.;
Nimmesgern, H.; Stull, P. D. J. Am. Chem. Soc. 1988, 110,
2894; (c) Padwa, A.; Fryxell, G. E.; Zhi, L. J. Org. Chem.
1988, 53, 2875; (d) Padwa, A.; Fryxell, G. E.; Zhi, L. J.
Am. Chem. Soc. 1990, 112, 3100; (e) Padwa, A.; Horn-
buckle, S. F. Chem. Rev. 1991, 91, 263; (f) Padwa, A.;
Weingarten, M. D. Chem. Rev. 1996, 96, 223; (g) Padwa,
A. Top. Curr. Chem. 1997, 189, 121; (h) Padwa, A. Helv.
Chim. Acta 2005, 88, 1357.
3. (a) Padwa, A.; Sandanayaka, V. P.; Curtis, E. A. J. Am.
Chem. Soc. 1994, 116, 2667; (b) Padwa, A.; Curtis, E. A.;
Sandanayaka, V. P. J. Org. Chem. 1996, 61, 73.
4. (a) Padwa, A.; Price, A. T. J. Org. Chem. 1995, 60, 6258;
(b) Padwa, A.; Price, A. T. J. Org. Chem. 1998, 63, 556; (c)
Mejia-Oneto, J. M.; Padwa, A. Tetrahedron Lett. 2004, 45,
9115; (d) Mejia-Oneto, J. M.; Padwa, A. Org. Lett. 2004,
6, 3241; (e) Padwa, A.; Boonsombat, J.; Rashatasakhon,
P.; Willis, J. Org. Lett. 2005, 7, 3725; (f) Padwa, A.;
Lynch, S. M.; Mejia-Oneto, J. M.; Zhang, H. J. Org.
Chem. 2005, 70, 2206.
5. (a) Cossy, J.; Aclinou, P.; Bellosta, V.; Furet, N.; Baranne-
Lafont, J.; Sparfel, D.; Souchaud, C. Tetrahedron Lett.
1991, 32, 1315; (b) Cossy, J.; Ranaivosata, J.-L.; Bellosta,
V.; Ancerewicz, J.; Ferritto, R.; Vogel, P. J. Org. Chem.
1995, 60, 8351; (c) Cossy, J.; Ranaivosata, J.-L.; Bellosta,
V. Tetrahedron Lett. 1995, 36, 2067.
6. (a) Cauwberghs, S. G.; De Clercq, P. J. Tetrahedron Lett.
1988, 29, 6501; (b) De Schrijver, J.; De Clerq, P. J.
Tetrahedron Lett. 1993, 34, 4369; (c) Padwa, A.; Sandana-
yaka, V. P.; Curtis, E. A. J. Am. Chem. Soc. 1994, 116,
2667.
In summary, N-sulfonyl indoles can be easily deprotec-
ted by a photoinduced electron transfer reaction with
triethylamine. By using an equivalent amount of n-
Bu3SnH in the photolysis medium, it is possible to sup-
press the competing photo-Fries like rearrangement by
scavenging the phenylsulfonyl radical. It is anticipated
that the mild and chemoselective nature of this deprotec-
tion reaction should lead to its application in synthesis.
*
-
:
SET
.
.
+
NEt3
+
NEt3
N
N
18
SO2Ph
SO2Ph
17 (a-e)
-PhSO2
13 (a-e)
.
7. (a) Gribble, G. W.; Fletcher, G. L.; Ketcha, D.; Rajopa-
dhye, M. J. Org. Chem. 1989, 54, 3264; (b) Saxton, J. E.
Nat. Prod. Rep. 1993, 10, 349.
8. du Vigneaud, V.; Behrens, O. K. J. Biol. Chem. 1937, 117,
27.
9. (a) Ji, S.; Gortler, L. B.; Waring, A.; Battisti, A.; Bank, S.;
Closson, W. D.; Wriede, P. J. Am. Chem. Soc. 1967, 89,
5311; (b) Quall, K. S.; Ji, S.; Kim, Y. M.; Closson, W. D.;
Zubieta, J. A. J. Org. Chem. 1978, 43, 1311.
10. Snyder, H. R.; Heckert, R. E. J. Am. Chem. Soc. 1952, 74,
2006.
PhO2S
H
.
+
PhSO2
.
N
N
-
-
20 (a-e)
19 (a-e)
n-Bu3SnH
18
18
PhSO2H
PhO2S
11. (a) Haskins, C. M.; Knight, D. W. Tetrahedron Lett. 2004,
45, 599; (b) Fleming, I.; Frackenpohl, J.; Ila, H. J. Chem.
Soc., Perkin Trans. 1 1998, 1229; (c) Sabitha, G.; Abra-
ham, S.; Subba Reddy, B. V.; Yadav, J. S. Synlett. 1999,
1745; (d) Witulski, B.; Alayrac, C. Angew. Chem., Int. Ed.
2002, 41, 3281.
N
H
N
H
15 (a-e)
14 (a-e)
Scheme 4.