Page 7 of 9
Green Chemistry
Please do not adjust margins
Journal Name
ARTICLE
building blocks, thus providing a potentially petroleum-
independent solution to valuable aromatic compounds.
Notes and references
DOI: 10.1039/D0GC00944J
1
A. Maneffa, P. Priecel, J. A. Lopez-Sanchez, ChemSusChem. 2016,
9, 2736-
2748.
2 J. S. J. Diebold, Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem. 1987, 32, 297.
3 (a) P. A. Horne, N. Nugranad, P. T. Williams, J. Anal. Appl. Pyrol. 1995, 34, 87-
108; (b) H. Zhang, Y.-T. Cheng, T. P. Vispute, R. Xiao, G. W. Huber, Energ. Environ.
4. Experimental Section
Reagents and catalysts: Acrolein (96.0%) was purchased from
Alfa and isoprene (99.0%) from TCI. The ionic liquid
[Bmim]Zn2Cl5 was prepared by mixing 1-butyl-3-methyl-
imidazolium chloride and anhydrous ZnCl2 (2 equiv.) followed
Sci. 2011, 4, 2297-2307; (c) Y. T. Cheng, J. Jae, J. Shi, W. Fan, G. W. Huber, Angew.
Chem. Int. Ed. 2012, 51, 1387-1390; (d) A. Zheng, Z. Zhao, S. Chang, Z. Huang, K.
Zhao, H. Wu, X. Wang, F. He, H. Li, Green Chem. 2014, 16, 2580-2586; (e) X. Qi, W.
o
by heating at 100 C for 12 h under N2 with vigorous stirring,
Fan, ACS Catal. 2019,
4 (a) C. Z. Li, X. C. Zhao, A. Q. Wang, G. W. Huber, T. Zhang, Chem. Rev. 2015, 115
11559-11624; (b) Y. Shao, Q. Xia, L. Dong, X. Liu, X. Han, S. F. Parker, Y. Cheng, L.
9, 2626-2632.
according to a previous study.17a Al2O3 was from Sinopharm
Chemical Reagent. Co., Ltd., and used after calcination at 700 oC
for 2 h; The metal precursors were Pd(NO3)2 (Shanghai 3A
Chemical Reagent. Co., Ltd.) and Fe(NO3)3·9H2O (Shanghai
Aladdin Bio-Chem Technology Co., Ltd.), respectively. Catalysts
were prepared by means of incipient wetness impregnation as
described in Supporting Information.
,
L. Daemen, A. J. Ramirez-Cuesta, S. Yang, Y. Wang, Nature Commun. 2017, 8,
16104.
5 T. W. Lyons, D. Guironnet, M. Findlater, M. Brookhart, J. Am. Chem. Soc. 2012,
134, 15708-15711.
6 (a) J. Zhang, W. Qian, C. Kong, F. Wei, ACS Catal. 2015,
Huang, S. Zhang, Z. Liu, W. Xin, S. Xie, L. Xu, ACS Catal. 2012,
Zhang, X. Zhu, S. Zhang, M. Cheng, M. Yu, G. Wang, C. Li, Catal. Sci. Technol., 2019,
, 316-326; (d) X. Zhu, J. Zhang, M. Cheng, G. Wang, M. Yu, C. Li, Ind. Eng. Chem.
Res. 201 58, 19446−19455.
5
, 2982-2988; (b) L. Yu, S.
Catalytic conversion of 4-MCHCA: The 4-MCHCA conversion was
carried out in a fixed bed reactor with an inner diameter of 10
mm and a total length of 350 mm quartz tube. The catalysts
were held in the reaction tube. Before tests, the catalysts were
reduced at 350 oC for 2 h under atmospheric hydrogen. 4-
MCHCA solution was supplied to the catalyst layer at 2.4 mL·h-1
by a constant flow piston pump along with atmospheric
hydrogen as the carrier gas at a flow rate of 15 mL min-1. A
condenser within cooling ice pack was used to trap the
products, and the products were analyzed by GC-MS equipped
with a HP-5 capillary column and a FID detector.
Methods of data processing: The conversion and the selectivity
were determined based on the internal standard method with
n-dodecane as the internal standard chemical. The yields of
toluene, PX and other identified products, along with the
conversion of 4-MCHCA were defined as follows:
2, 1203-1210; (c) J.
9
9,
7 (a) C. C. Chang, S. K. Green, C. L. Williams, P. J. Dauenhauer, W. Fan, Green Chem.
2014, 16, 585-588. (b) C. C. Chang, H. J. Cho, J. Yu, R. J. Gorte, J. Gulbinski, P. J.
Dauenhauer, W. Fan, Green Chem. 2016, 18, 1368-1376. (c) N. Nikbin, P. T. Do, S.
Caratzoulas, R. F. Lobo, P. J. Dauenhauer, D. G. Vlachos, J. Catal. 2013, 297, 35-43;
(d) C. L. Williams, C. C. Chang, P. Do, N. Nikbin, S. Caratzoulas, D. G. Vlachos, R. F.
Lobo, W. Fan, P. J. Dauenhauer, ACS Catal. 2012,
8 (a) J. J. Pacheco, M. E. Davis, P. Natl. Acad. Sci. USA. 2014, 111, 8363-8367; (b) J.
J. Pacheco, J. A. Labinger, A. L. Sessions, M. E. Davis, ACS Catal. 2015, , 5904-5913.
9 (a) R. Y. Rohling, E. Uslamin, B. Zijlstra, I. C. Tranca, I. A. W. Filot, E. J. M. Hensen,
E. A. Pidko, ACS Catal. 2018, , 760−769; (b) A. E. Settle, L. Berstis, N. A. Rorrer, Y.
Roman-Leshkóv, G. T. Beckham, R. M. Richards, D. R. Vardon, Green Chem. 2017,
19, 3468-3492; (c) R. Zhao, L. Xu, S. Huang, W. Zhang, Catal. Sci. Technol. 2019,
2, 935-939.
5
8
9
,
Conversion (%) = (moles of raw material before reaction-moles
of raw material after reaction)/(moles of raw material before
reaction) × 100%
Yield (%) = (moles of the products)/(moles of raw material
before reaction) × 100%
WHSV = (flow rate of 4-MCHCA [g·h-1])/(weight of the
catalyst[g]).
5676-5685; (d) Z. Cui, Y. Fang, T. Tan, Catal. Lett. 2020, 150, 794-801; (e) S.
Thiyagarajan, H. C. Genuino, J. C. van der Waal, E. de Jong, B. M. Weckhuysen, J.
van Haveren, P. C. A. Bruijnincx, D. S. van Es, Angew. Chem. Int. Ed. 2016, 55, 1368-
1371. (f) I. F. Teixeira, B. T. W. Lo, P. Kostetskyy, M. Stamatakis, L. Ye, C. C. Tang,
G. Mpourmpakis, S. C. E. Tsang, Angew. Chem. Int. Ed. 2016, 55, 13061-13066.
10 J. K. Ogunjobi, T. J. Farmer, C. R. McElroy, S. W. Breeden, D. J. Macquarrie, D.
Thornthwaite, J. H. Clark, ACS Sustainable Chem. Eng. 2019,
11 (a) T. Pfennig, A. Chemburkar, S. Cakolli, M. Neurock, B. H. Shanks, ACS
Sustainable Chem. Eng. 2018, , 12855−12864. (b) T. Pfennig, R. L. Johnson, B. H.
7, 8183−8194.
6
Conflicts of interest
Shanks, Green Chem. 2017, 19, 3263–3271.
There are no conflicts to declare.
12 S. Berard, C. Vallee, D. Delcroix, Ind. Eng. Chem. Res. 2015, 54, 7164−7168.
13 (a) X. Lv, F. Wang, P. Zhou, L. Ye, W. Xie, H. Xu, H. Yu, Nat. Commun. 2016,
7
,
12851; (b) X. Gao, F. Gao, D. Liu, H. Zhang, X. Nie, C. Yang, Energ. Environ. Sci. 2016,
, 1400-1411.
14 (a) B. A. Qureshi, X. Lan, M. T. Arslan, T. Wang, Ind. Eng. Chem. Res. 2019, 58
Acknowledgements
9
,
Support from the National Key R&D Program of China
(2019YFC1905300), the National Natural Science Foundation of
China (21902152, 21878288, 21721004, 21690083), the China
Postdoctoral Science Foundation (2019M651160), the Strategic
Priority Research Program of the Chinese Academy of Sciences
(XDB17020100), and DNL Cooperation Fund CAS (DNL180302)
is gratefully acknowledged.
12611-12622; (b) L. Z. Tao, B. Yan, Y. Liang, B. Q. Xu, Green Chem. 2013, 15, 696-
705; (c) Q. Xie, S. Li, R. Gong, G. Zheng, Y. Wang, P. Xu, Y. Duan, S. Yu, M. Lu, W. Ji,
Y. Nie, J. Ji, Appl. Catal. B. Environ. 2019, 243, 455-462; (d) L. Liu, X. P. Ye, J. J.
Bozell, ChemSusChem. 2012, 5, 1162-1180.
15 T. Dai, C. Li, L. Li, Z. K. Zhao, B. Zhang, Y. Cong, A. Wang, Angew. Chem. Int. Ed.
2018, 57, 1808-1812.
16 (a) R. Ahuja, B. Punji, M. Findlater, C. Supplee, W. Schinski, M. Brookhart, A. S.
Goldman, Nat. Chem. 2011,
3, 167-171; (b) J. Mitra, X. Zhou, T. Rauchfuss, Green
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins