Page 3 of 3
ChemComm
Please do not adjust margins
Journal Name
COMMUNICATION
2
3
(a) J. G. Kettle, H. Alwan, M. Bista, J. Breed, N. L. Davies, K.
1). Two alternative transition states, TS1 and TS2 with coordinated
potassium cation were located, as shown in Figure 1. The
calculations show the lowest energy transition state TS1 with a
pseudo-boat conformation of the bicyclic core (Figure 1).
Coordination of two oxygens to potassium does not cause any
significant distortions of the nucleophile’s trajectory in this case.
The nucleophile approaches the π-bond at a 115° angle, a slightly
larger than normal Bürgi–Dunitz angle for a trigonal attack, which is
expected for the small cycle with an increased s-character of the
strained double bond. Moreover, the shortened distance between
the potassium cation and the anionic center at C8 of cyclopropene
is responsible for an additional stabilization of this activated
complex. The activation energy of the 7-exo-trig process is calcul-
ated to be 18.30 kcal/mol, while the ΔG° of this cyclization was
found to be -5.68 kcal/mol. The significantly lower activation
energy of the cyclization compared to that of the modeled
intermolecular process (12!TS3!13, Figure 2) could explain the
favorable formation of the medium rings and lack of oligomeriz-
ation products even in relatively concentrated solutions. It should
also be mentioned that the high activation energy of the pseudo-
chair transition state TS2 (32.35 kcal/mol, Figure 1) rules out this
alternative pathway.
In conclusion, we have developed a novel method for the
assembly of medium cyclic ethers via a formal nucleophilic substit-
ution of bromocyclopropanes. An efficient exo-trig ring closure
produced 7-10 membered heterocycles with excellent cis-
selectivity. Favorable pre-organization of the acyclic precursor
augmented by the strain energy release makes this cyclization
approach highly efficient whilst offering a unique possibility for
additional stabilization of the medium ring conformation in a fused
bicyclic motif. The reaction proceeds in the unusually high for
medium ring closure concentration range, rendering this method
practical and easily scalable. DFT modeling of the 7-exo-trig
cyclization suggested the pseudo-boat TS1 as the likely structure of
the reaction transition state. The three-prong coordinated
potassium plays a crucial role in stabilization of the newly forming
bicyclic core, making this model potentially suitable for predicting
the results of diastereoselective cyclizations. Further studies are
currently underway in our laboratories, aiming at (1) extending this
methodology to the synthesis of larger ring systems; (2) employ-
yment of tethered chiral nucleophilic entities for diastereoselective
ring closure; (3) probing N-, C-, and S-based nucleophiles for furn-
ishing other types of medium heterocycles; (4) evaluating endo-trig
mode of the ring closure.
DOI: 10.1039/C6CC02178F
A. Lau, J. W. M. Nissink, J. Read, J. S. Scott, B. Taylor, G. Walker,
L. Wissler, M. Wylot, J. Med. Chem. 2016, 59, 2346. (b) M. R.
Lambu, S. Kumar, S. K. Yousuf, D. K. Sharma, A. Hussain, A.
Kumar, F. Malik, D. Mukherjee, J. Med. Chem. 2013, 56, 6122.
See, for selected examples: (a) I. D. G. Watson, S. Ritter, F. D.
Toste, J. Am. Chem. Soc. 2009, 131, 2056. (b) A. Klapars, S. Parris,
K. W. Anderson, S. L. Buchwald, J. Am. Chem. Soc. 2004, 126,
3529. (c) A. T. Radosevich, V. S. Chan, H.-W. Shih, F. D. Toste,
Angew. Chem., Int. Ed. 2008, 47, 3755. (d) J. E. M. N. Klein, H.
Muller-Bunz, Y. Ortin, P. Evans, Tetrahedron Lett. 2008, 49, 7187.
(e) K. C. Majumdar, B. Chattopadhyay, Synlett 2008, 979.
For reviews, see: (a) A. J. McCarroll, J. C. Walton, Angew. Chem.,
Int. Ed. 2001, 40, 2224. (b) L. Yet, Tetrahedron 1999, 55, 9349.
For recent examples, see: (c) D. J. Wardrop, E. G. Bowen, R. E.
Forslund, A. D. Sussman, S. L. Weerasekera, J. Am. Chem. Soc.
2010, 132, 1188.
See, for example: (a) S. Magens, B. Plietker, J. Org. Chem. 2010,
75, 3715. (b) M.-T. Dinh, S. Bouzbouz, J.-L. Peglion, J. Cossy,
Tetrahedron 2008, 64, 5703. (c) H. Kuno, M. Shibagaki, K.
Takahashi, I. Honda, H. Matsushita, Chem. Lett. 1992, 571. (d) J.
S. Yadav, R. Somaiah, K. Ravindar, L. Chandraiah, Tetrahedron
Lett. 2008, 49, 2848. (e) Y. Ohba, M. Takatsuji, K. Nakahara, H.
Fujioka, Y. Kita, Chem. Eur. J. 2009, 15, 3526. (f) L. Kaisalo, T.
Hase, T. Synlett 1992, 503.
For recent examples of 7-exo-trig ring closure, see: (a) D. C.
Leitch, P. R. Payne, C. R. Dunbar, L. L. Schafer, J. Am. Chem. Soc.
2009, 131, 18246. (b) J. Saha, M. W. Peczuh, Org. Lett. 2009, 11,
4482. For 8-exo-trig, see: (c) D. Tripathi, S. K. Pandey, P. Kumar,
Tetrahedron 2009, 65, 2226. (d) M. C. Carreno, R. Des Mazery,
A. Urbano, F. Colobert, G. Solladie, Org. Lett. 2005, 7, 2039. For
9-exo-trig, see: (e) J. Iqbal, B. Bhatia, N. K. Nayyar, Tetrahedron
1991, 47, 6457. For 10-exo-trig, see: (f) M. Bartra, J. Vilarrasa, J.
Org. Chem. 1991, 56, 5132.
(a) J. E. Baldwin, R. C. Thomas, L. I. Kruse, L. Silberman, J. Org.
Chem. 1977, 42, 3846. (b) J. E. Baldwin, J. Chem. Soc., Chem.
Commun. 1976, 734.
B. K. Alnasleh, W. M. Sherrill, M. Rubina, J. Banning, M. Rubin, J.
Am. Chem. Soc. 2009, 131, 6906.
4
5
6
7
8
9
(a) J. E. Banning, A. R. Prosser, M. Rubin, Org. Lett. 2010, 12,
1488. (b) A. R. Prosser, J. E. Banning, M. Rubina, M. Rubin, Org.
Lett. 2010, 12, 3968. (c) J. E. Banning, A. R. Prosser, B. K.
Alnasleh, J. Smarker, M. Rubina, M. Rubin, J. Org. Chem. 2011,
76, 3968. (d) P. Ryabchuk, A. Edwards, N. Gerasimchuk, M.
Rubina, M. Rubin, Org. Lett. 2013, 15, 6010.
10 (a) P. Ryabchuk, M. Rubina, J. Xu, M. Rubin, Org. Lett. 2012, 14,
1752. (b) J. E. Banning, J. Gentillon, P. Ryabchuk, A. R. Prosser, A.
Rogers, A. Edwards, A. Holtzen, I. A. Babkov, M. Rubina, M.
Rubin, J. Org. Chem. 2013, 78, 7601.
11 For other closely related processes, see: (a) M. Zhang, J. Guo, Y.
Gong, Eur. J. Org. Chem. 2014, 1942. (b) M. Zhang, F. Luo, Y.
Gong, J. Org. Chem. 2014, 79, 1335. (c) Z. Huang, J. Hu, Y. Gong,
Org. Biomol. Chem. 2015, 13, 8561. (d) Y. Zhu, Y. Gong, J. Org.
Chem. 2015, 80, 490. (e) A. Levin, I. Marek, Chem. Commun.
2008, 4300. (f) Y. Zhu, M. Zhang, H. Yuan, Y. Gong, Org. Biomol.
Chem. 2014, 12, 8828. (g) J. Hu, Y. Liu, Y. Gong, Adv. Synth.
Catal. 2015, 357, 2781.
12 For assembly of 8-membered heterocycles via 4+4 cyclodimer-
ization of cyclopropenyl-3-methanols, see: A. Edwards, T.
Bennin, M. Rubina, M. Rubin, RSC Adv. 2015, 5, 71849.
13 See, for example: V. Maslivetc, M. Rubina, M. Rubin, Org.
Biomol. Chem. 2015, 13, 8993.
We are grateful for the financial support by the Russian
Foundation for Basic Research (grant #15-03-02661). Support
for NMR instruments used in this project was provided by NIH
Shared Instrumentation Grant #S10RR024664 and NSF Major
Research Instrumentation Grant #0329648.
Notes and references
14 See Supporting Information for details.
1
For reviews, see: (a) H. M. C. Ferraz, F. I. Bombonato, L. S. Longo,
Jr., Synthesis 2007, 3261. (b) H. M. C. Ferraz, F. I. Bombonato,
M. K. Sano, L. S. Longo, Jr., Quim. Nova 2008, 31, 885. (c) M. A.
Ciufolini, Farmaco 2005, 60, 627.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins