10.1002/anie.201915218
Angewandte Chemie International Edition
COMMUNICATION
[5]
[6]
a) I. Arends, Ruthenium catalysts and fine chemistry, Vol. 11, Springer
Science & Business Media, 2004; b) J. Allard, I. Curbet, G. Chollet, F.
Tripoteau, S. Sambou, F. Caijo, Y. Raoul, C. Crévisy, O. Baslé, M.
Mauduit, Chem. Eur. J. 2017, 23, 12729-12734; c) A. Dumas, R. Tarrieu,
T. Vives, T. Roisnel, V. Dorcet, O. Baslé, M. Mauduit, ACS Catal. 2018,
8, 3257-3262.
inefficient reactions to proceed in high efficiency and excellent
yield. This work not only explored the utility of allyl alcohol as
carbonyl surrogate to undergo C–C formation but also further
demonstrated the advantage of using umpolung hydrazone as a
carbanion equivalent. The potential of late stage functionalization
by this method was also demonstrated on complex molecules.
Further investigations and more in-depth mechanistic studies are
still undergoing in our laboratory.
a) Y. Sasson, G. L. Rempel, Tetrahedron Lett. 1974, 15, 4133-4136; b)
M. Seijiro, O. Takashi, O. Koichiro, T. Kazuhiko, N. Hitosi, Bull. Chem.
Soc. Jpn. 1985, 58, 844-849; c) B. M. Trost, R. J. Kulawiec, J. Am. Chem.
Soc. 1993, 115, 2027-2036; d) B. M. Trost, R. C. Livingston, J. Am. Chem.
Soc. 1995, 117, 9586-9587; e) P. Crochet, M. A. Fernández-Zúmel, J.
Gimeno, M. Scheele, Organometallics 2006, 25, 4846-4849; f) R. W.
Goetz, M. Orchin, J. Am. Chem. Soc. 1963, 85, 1549-1550.
[7]
a) K. Sorimachi, M. Terada, J. Am. Chem. Soc. 2008, 130, 14452-14453;
b) L.-L. Mao, C.-C. Li, Q. Yang, M.-X. Cheng, S.-D. Yang, Chem.
Commun. 2017, 53, 4473-4476; c) M. L. Scheuermann, E. J. Johnson,
P. J. Chirik, Org. Lett. 2015, 17, 2716-2719; d) A. Vasseur, J. Bruffaerts,
I. Marek, Nat. Chem. 2016, 8, 209; e) R. Uma, M. Davies, C. Crévisy, R.
Grée, Tetrahedron Lett. 2001, 42, 3069-3072; f) S.-Y. Zhang, F.-M.
Zhang, Y.-Q. Tu, Chem. Soc. Rev. 2011, 40, 1937-1949; g) J. R. Allen,
A. Bahamonde, Y. Furukawa, M. S. Sigman, J. Am. Chem. Soc. 2019,
141, 8670-8674; h) H. Sommer, F. Juliá-Hernández, R. Martin, I. Marek,
ACS Cent. Sci. 2018, 4, 153-165; i) S.-Z. Sun, M. Börjesson, R. Martin-
Montero, R. Martin, J. Am. Chem. Soc. 2018, 140, 12765-12769; j) F.
Juliá-Hernández, T. Moragas, J. Cornella, R. Martin, Nature 2017, 545,
84.
[8]
a) J.-E. Bäckvall, U. Andreasson, Tetrahedron Lett. 1993, 34, 5459-5462;
b) D. Wang, D. Chen, J. X. Haberman, C.-J. Li, Tetrahedron 1998, 54,
5129-5142; c) D. Finnegan, B. A. Seigal, M. L. Snapper, Org. Lett. 2006,
8, 2603-2606; d) V. Cadierno, J. Francos, J. Gimeno, N. Nebra, Chem.
Commun. 2007, 2536-2538; e) V. Cadierno, P. Crochet, J. Francos, S.
E. García-Garrido, J. Gimeno, N. Nebra, Green Chem. 2009, 11, 1992-
2000; f) V. Bizet, X. Pannecoucke, J.-L. Renaud, D. Cahard, Angew.
Chem. Int. Ed. 2012, 51, 6467-6470; g) P. Lorenzo-Luis, A. Romerosa,
M. Serrano-Ruiz, ACS Catal. 2012, 2, 1079-1086.
Scheme 8. Proposed mechanism for relay nucleophilic addition of
hydrazones
Acknowledgements
[9]
a) C.-C. Li, X.-J. Dai, H. Wang, D. Zhu, J. Gao, C.-J. Li, Org. Lett. 2018,
20, 3801-3805; b) X.-J. Dai, C.-J. Li, J. Am. Chem. Soc. 2016, 138, 5433-
5440.
The authors acknowledge the Canada Research Chair
Foundation (to C.-J. Li), the CFI, FRQNT Center for Green
Chemistry and Catalysis, NSERC, and McGill University for
support of our research. J. K. thanks China Scholarship Council
for a visiting scholarship.
[10] J. F. Hartwig, J. P. Collman, Organotransition Metal Chemistry: From
Bonding to Catalysis, Vol. 1, University Science Books Sausalito, CA,
2010.
[11] a) C. W. Jung, P. E. Garrou, P. R. Hoffman, K. G. Caulton, Inorg. Chem.
1984, 23, 726-729; b) W. Baratta, E. Herdtweck, K. Siega, M. Toniutti, P.
Rigo, Organometallics 2005, 24, 1660-1669.
Keywords: relay • alkylation • allylic alcohol • ruthenium •
[12] a) N. Kishner, J. Russ. Phys. Chem. Soc. 1911, 43, 582-595; b) L. Wolff,
Justus Liebigs Annal. Chem. 1912, 394, 86-108; c) L. Wolff, Eur. J. Org.
Chem. 1912, 394, 86-108; d) C. H. Herr, F. C. Whitmore, R. W.
Schiessler, J. Am. Chem. Soc. 1945, 67, 2061-2063; e) P. Wharton, D.
Bohlen, J. Org. Chem. 1961, 26, 3615-3616; f) L. Caglioti, M. Magi,
Tetrahedron 1963, 19, 1127-1131; g) H. H. Szmant, C. M. Harmuth, J.
Am. Chem. Soc. 1964, 86, 2909-2914.
carbanion
[1]
a) T. R. Hoye, C. S. Jeffrey, M. A. Tennakoon, J. Wang, H. Zhao, J. Am.
Chem. Soc. 2004, 126, 10210-10211; b) D. J. Wallace, Angew. Chem.
Int. Ed. 2005, 44, 1912-1915; c) H. U. Vora, T. Rovis, J. Am. Chem. Soc.
2007, 129, 13796-13797; d) T. R. Hoye, J. Jeon, L. C. Kopel, T. D. Ryba,
M. A. Tennakoon, Y. Wang, Angew. Chem. Int. Ed. 2010, 49, 6151-6155;
e) G. Dong, P. Teo, Z. K. Wickens, R. H. Grubbs, Science 2011, 333,
1609-1612.
[13] P. Dierkes, P. W. N. M. van Leeuwen, J. Chem. Soc., Dalton Trans. 1999,
1519-1530.
[14] a) D. V. McGrath, R. H. Grubbs, Organometallics 1994, 13, 224-235; b)
S. G. Davies, Organotransition Metal Chemistry: Applications to Organic
Synthesis: Applications to Organic Synthesis, Vol. 2, Elsevier, 2013.
[2]
[3]
a) K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angew. Chem. Int. Ed.
2006, 45, 7134-7186; b) C.-J. Li, Acc. Chem. Res. 2009, 42, 335-344; c)
C. Grondal, M. Jeanty, D. Enders, Nat. Chem. 2010, 2, 167.
a) N. Chen, X.-J. Dai, H. Wang, C.-J. Li, Angew. Chem. Int. Ed. 2017, 56,
6260-6263; b) X.-J. Dai, H. Wang, C.-J. Li, Angew. Chem. Int. Ed. 2017,
56, 6302-6306; c) H. Wang, X.-J. Dai, C.-J. Li, Nat. Chem. 2017, 9, 374-
378.
[4]
a) W. Wei, X.-J. Dai, H. Wang, C. Li, X. Yang, C.-J. Li, Chem. Sci. 2017,
8, 8193-8197; b) L. Lv, Z. Qiu, J. Li, M. Liu, C.-J. Li, Nat. Commun, 2018,
9, 4739; c) L. Lv, D. Zhu, J. Tang, Z. Qiu, C.-C. Li, J. Gao, C.-J. Li, ACS
Catal. 2018, 8, 4622-4627; d) J. Tang, L. Lv, X.-J. Dai, C.-C. Li, L. Li, C.-
J. Li, Chem. Commun. 2018, 54, 1750-1753; e) D. Zhu, L. Lv, C.-C. Li,
S. Ung, J. Gao, C.-J. Li, Angew. Chem. Int. Ed. 2018, 57, 16520-16524;
f) L. Lv, D. Zhu, C.-J. Li, Nat. Commun, 2019, 10, 715; g) C. Zhu, J.
Zhang, Chem. Commun. 2019, 55, 2793-2796.
5
This article is protected by copyright. All rights reserved.