of the nanocrystals in these nanohybrids.{ The nanohybrids 6a
and 6b show excellent stability for at least 6 months.
In summary, we have documented the synthesis of a new type of
gallamide-based dendritic thiols possessing diethylene glycol ether
tether(s) with three or five diverted hydroxyl terminals. We have
also demonstrated a simple biphasic system for ligand exchange on
the surface of CdSe/ZnS nanocrystals. After covering the surfaces
of nanocrystals with these thiols, the resultant nanohybrids
become highly water soluble and retain the morphological and
photophysical properties of the original nanocrystals. Further
extension of this system to the synthesis of other metal- or metal
oxide-centered nanohybrids of biological interest is underway.
We thank the National Science Council of Taiwan for financial
support of this research.
Fig. 2 Partial 1H NMR spectra of 5a (top, CDCl3) and 6a (bottom,
Chien-Tien Chen,* Vijay D. Pawar, Yogesh S. Munot, Chia-Chun Chen*
and Chih-Jung Hsu
D2O).
Department of Chemistry, National Taiwan Normal University, #88,
Sec. 4, Ding-jou Road, Taipei, 11650, Taiwan.
E-mail: chefv043@scc.ntnu.edu.tw; Fax: +886 2 2932 4249;
Tel: +886 2 2930 9095
Notes and references
1 C. B. Murray, C. R. Kagan and M. G. Bawendi, Annu. Rev. Mater.,
2000, 30, 545.
2 A. P. Alivisatos, Science, 1996, 271, 933.
3 X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos, J. Am.
Chem. Soc., 1997, 119, 7019.
4 (a) A. P. Alivisatos, Nature, 1994, 370, 354; (b) A. A. Mamedov,
A. Belov, M. Giersig, N. N. Mamedova and N. A. Kotov, J. Am.
Chem. Soc., 2001, 123, 7738.
5 V. C. Sundar, H. J. Eisler and M. G. Bawendi, Adv. Mater., 2002, 14,
739.
6 (a) A. P. Alivisatos, Science, 1998, 281, 2013; (b) W. C. W. Chan and
S. Nie, Science, 1998, 281, 2016.
7 D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss
and A. P. Alivisatos, J. Phys. Chem. B, 2001, 105, 8861.
8 B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou
and A. Libchaber, Science, 2002, 298, 1759.
Fig. 3 Partial 1H NMR spectra of 5b (top, CDCl3) and 6b (bottom,
9 (a) C.-T. Chen, J.-H. Kuo, C.-H. Li, N. B. Barhate, S.-W. Hon,
T.-W. Li, S.-D. Chao, C.-C. Liu, Y.-C. Li, I.-H. Chang, J.-S. Lin,
C.-J. Liu and Y.-C. Chou, Org. Lett., 2001, 3, 3729; (b) C.-C. Lin,
Y.-C. Yeh, C.-Y. Yang, C.-L. Chen, G.-F. Chen, C.-C. Chen and
Y.-C. Wu, J. Am. Chem. Soc., 2002, 124, 3508; (c) C.-T. Chen, J.-S. Lin,
J.-H. Kuo, S.-S. Weng, T.-S. Cuo, Y.-W. Lin, C.-C. Cheng,
Y.-C. Huang, J.-K. Yu and P.-T. Chou, Org. Lett., 2004, 6, 4471; (d)
C.-T. Chen, J.-H. Kuo, C.-H. Ku, S.-S. Weng and C.-Y. Liu, J. Org.
Chem., 2005, 70, 1328; (e) C.-T. Chen, J.-H. Kuo, V. D. Pawar,
Y. S. Munot, S.-S. Weng, C.-H. Ku and C.-Y. Liu, J. Org. Chem., 2005,
70, 1188.
10 Y. A. Wang, J. J. Li, J. Chen and X. Peng, J. Am. Chem. Soc., 2002,
124, 2293.
11 M. Mammen, S. K. Choi and G. M. Whitesides, Angew. Chem., Int.
Ed., 1998, 37, 2754.
12 (a) J. E. B. Katari, V. L. Colvin and A. P. Alivisatos, J. Phys. Chem.,
1994, 98, 4109; (b) C. B. Murray, D. J. Norris and M. G. Bawendi,
J. Am. Chem. Soc., 1993, 115, 8706.
13 H. Skaff and T. Emrick, Chem. Commun., 2003, 52.
14 C. Zhang, S. O’Brien and L. Balogh, J. Phys. Chem. B, 2002, 106,
10316.
D2O).
564 nm, respectively. They are slightly red-shifted by 2 nm as
compared to those of pyridine-capped nanocrystals, presumably
due to slight increases in the overall size of the hybrids. The
evidence supporting the efficient attachment of thiols 5a and 5b to
the CdSe/ZnS surface comes from characteristic signal changes of
the –CH2CH2SH fragment in their (in CDCl3) and in the
nanohybrids’ (in D2O) 1H NMR spectra, Figs. 2 and 3. The
quartet at 2.78 and 2.72 ppm corresponds to –CH2CH2SH in 5a
and 5b, respectively. Peak broadening (usually observed after
attachment) and slight chemical shift changes (by 0.03 ppm) of the
methylene unit along with disappearance of the thiol proton
signals were observed for the corresponding nanohybrids.
The averaged extent of coverage was found to be greater than
82% with minor pyridine attachment as judged by the integration
values of the aromatic signals in their 1H NMR spectra in D2O.{
In addition, the nanoparticle size distributions for 6a and 6b
range from 4.0–4.8 and 3.1–3.8 nm, respectively, as evidenced by
high resolution transmission electron microscopy (HR–TEM)
measurements. The TEM images clearly indicate the crystallinity
15 B. S. Kim, L. Avila, L. E. Brus and I. P. Herman, Appl. Phys. Lett.,
2000, 76, 3715.
16 M. Green, N. Allsop, G. Wakefield, P. J. Dobson and J. L. Hutchison,
J. Mater. Chem., 2002, 12, 2671.
17 The differences in lmax are due to the use of two different batches of
pyridine-capped nanocrystals.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 2483–2485 | 2485