Organic Letters
Letter
V. V. Aldrichimica Acta 2007, 40, 7. (e) Meldal, M.; Tornøe, C. W.
Chem. Rev. 2008, 108, 2952. (f) Hein, J. E.; Fokin, V. V. Chem. Soc.
Rev. 2010, 39, 1302. (g) Agalave, S. G.; Maujan, S. R.; Pore, V. S.
Chem.Asian J. 2011, 6, 2696. (h) Lallana, E.; Riguera, R.; Fernandez-
Megia, E. Angew. Chem., Int. Ed. 2011, 50, 8794.
(3) Meng, J.-c.; Fokin, V. V.; Finn, M. G. Tetrahedron Lett. 2005, 46,
4543.
(4) Zhou, F.; Tan, C.; Tang, J.; Zhang, Y.-Y.; Gao, W.-M.; Wu, H.-H.;
Yu, Y.-H.; Zhou, J. J. Am. Chem. Soc. 2013, 135, 10994.
(5) For recent reviews on the synthesis of axially chiral biaryls, see:
(a) Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.;
Garner, J.; Breuning, M. Angew. Chem., Int. Ed. 2005, 44, 5384.
(b) Baudoin, O. Eur. J. Org. Chem. 2005, 4223. (c) Wallace, T. W. Org.
Biomol. Chem. 2006, 4, 3197. (d) Ogasawara, M.; Watanabe, S.
Synthesis 2009, 1761. (e) Tanaka, K. Chem.Asian J. 2009, 4, 508.
(f) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev.
2009, 38, 3193. (g) Xu, G.; Fu, W.; Liu, G.; Senanayanke, C. H.; Tang,
W. J. Am. Chem. Soc. 2014, 136, 570.
(6) For selected examples of the construction of chiral biaryls by [2 +
2 + 2] cycloaddition, see: (a) Nishida, G.; Noguchi, K.; Hirano, M.;
Tanaka, K. Angew. Chem., Int. Ed. 2007, 46, 3951. (b) Heller, B.;
Gutnov, A.; Fischer, C.; Drexler, H.-J.; Spannenberg, A.; Redkin, D.;
Sundermann, C.; Sundermann, B. Chem.Eur. J. 2007, 13, 1117.
(c) Shibata, T.; Yoshida, S.; Arai, Y.; Otsuka, M.; Endo, K. Tetrahedron
2008, 64, 821.
(7) For selected examples of the construction of chiral biaryls by
coupling reactions, see: (a) Uozumi, Y.; Matsuura, Y.; Arakawa, T.;
Yamada, Y. M. A. Angew. Chem., Int. Ed. 2009, 48, 2708. (b) Shen, X.;
Jones, G. O.; Watson, D. A.; Bhayana, B.; Buchwald, S. L. J. Am. Chem.
Soc. 2010, 132, 11278. (c) Egami, H.; Katsuki, T. J. Am. Chem. Soc.
2009, 131, 6082. (d) Huang, S.; Petersen, T. B.; Lipshutz, B. H. J. Am.
Chem. Soc. 2010, 132, 14021. (e) Yamamoto, T.; Akai, Y.; Nagata, Y.;
Suginome, M. Angew. Chem., Int. Ed. 2011, 50, 8844. (f) Yamaguchi,
K.; Yamaguchi, J.; Studer, A.; Itami, K. Chem. Sci. 2012, 3, 2165.
(g) Wang, S.; Li, J.; Miao, T.; Wu, W.; Li, Q.; Zhuang, Y.; Zhou, Z.;
Qiu, L. Org. Lett. 2012, 14, 1966.
(8) For selected examples of the construction of chiral biaryls by
desymmetrization, see: (a) Hayashi, T.; Niizuma, S.; Kamikawa, T.;
Suzuki, N.; Uozumi, Y. J. Am. Chem. Soc. 1995, 117, 9101.
(b) Kamikawa, T.; Uozumi, Y.; Hayashi, T. Tetrahedron Lett. 1996,
37, 3161. (c) Zhou, H.; Uozumi, Y. Synlett 2013, 24, 2550.
(d) Matsumoto, T.; Konegawa, T.; Nakamura, T.; Suzuki, K. Synlett
2002, 122. (e) Okuyama, K.; Shingubara, K.; Tsujiyama, S.; Suzuki, K.;
Matsumoto, T. Synlett 2009, 941. (f) Perron, Q.; Alexakis, A. Adv.
Synth. Catal. 2010, 352, 2611. (g) Mori, K.; Ichikawa, Y.; Kobayashi,
M.; Shibata, Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2013,
135, 3964.
(9) (a) Osako, T.; Panichakul, D.; Uozumi, Y. Org. Lett. 2012, 14,
194. (b) Yamada, Y. M. A.; Sarkar, S.; Uozumi, Y. J. Am. Chem. Soc.
2012, 134, 9285.
(10) Iwasa, S.; Nakamura, H.; Nishiyama, H. Heterocycles 2000, 52,
939.
(11) Unfortunately, the scope of the azide in the highly
enantioposition-selective CuAAC was limited to benzyl azide. The
use of para-substituted benzyl azides (p-OMe, p-CH3, p-CF3), octyl
azide, or phenyl azides provided the corresponding monotriazoles with
low levels of enantioselectivity (up to 35% ee). Details will be reported
elsewhere.
(12) For details, see Supporting Information. CCDC deposition
numbers: 1020680 (3h) and 1020681 (5).
D
dx.doi.org/10.1021/ol502778j | Org. Lett. XXXX, XXX, XXX−XXX