five-coordinate phosphine complexes of aluminium hydrocarbyl
8 S. Dagorne, L. Lavanant, R. Welter, C. Chassenieux, P. Haquette and
G. Jaouen, Organometallics, 2003, 22, 3732–3741.
9 V. C. Gibson, C. Redshaw, A. J. P. White and D. J. Williams,
J. Organomet. Chem., 1998, 550, 453–456.
10 H. Hao, S. Bhandari, Y. Ding, H. W. Roesky, J. Magull, H.-G.
Schmidt, M. Noltemeyer and C. Cui, Eur. J. Inorg. Chem., 2002,
1060–1065.
11 J.-H. Huang, H.-J. Chen, J.-C. Chang, C.-C. Zhou, G.-H. Lee and
S.-M. Peng, Organometallics, 2001, 20, 2647–2650.
12 E. Ihara, V. G. Young and R. F. Jordan, J. Am. Chem. Soc., 1998,
120, 8277–8278.
13 K. Kincaid, C. P. Gerlach, G. R. Giesbrecht, J. R. Hagadorn, G. D.
Whitener, A. Shafir and J. Arnold, Organometallics, 1999, 18, 5360–
5366.
such as tris[o-((diphenylphosphino)methyl)phenyl]aluminium
31
˚
(2.7295 A average). It should be noted that examples of
structurally characterized, five-coordinate phosphine complexes
containing Al–C bond(s) are extremely rare.43 In sharp contrast
to the results described herein, the X-ray structure of the closely
related Al[N(SiMe2CH2PiPr2)2](CH2Ph)2 reveals that only two
rather than three donor atoms of the potentially tridentate
amido phosphine ligand are bound to the aluminium center,
thereby resulting in a four-coordinate species.22 Interestingly, the
Al–P distance is slightly longer for [PNN]AlR2 than for the four-
coordinate [1]AlR2, e.g., [o-(2,6-Me2C6H3N)C6H4PPh2]AlEt2
21
˚
(2.456(4) A), due perhaps to the accommodation of the two
14 A. V. Korolev, I. A. Guzei and R. F. Jordan, J. Am. Chem. Soc., 1999,
121, 11605–11606.
five-membered rings in the meridional tridentate ligand for the
former. It is also anticipated from a purely steric viewpoint that
the Al–P distance in a five-coordinate species is longer than that
in a four-coordinate compound. Nevertheless, the dissociation
of the phosphorus atom from aluminium seems not to occur
readily on the NMR timescale. As a result, the P–Al–N(amide)
angles for [PNN]AlR2 (ca. 75.7◦) are notably smaller than those
found for the aluminium complexes supported by 1, e.g., [o-(2,6-
iPr2C6H3N)C6H4PPh2]AlMe2 (82.1(2)◦),21 although both ligand
systems incorporate an o-phenylene for the connection of the
amido nitrogen and the phosphorus donors.
15 A. V. Korolev, E. Ihara, I. A. Guzei, V. G. Young and R. F. Jordan,
J. Am. Chem. Soc., 2001, 123, 8291–8309.
16 L.-C. Liang, C.-W. Yang, M. Y. Chiang, C.-H. Hung and P.-Y. Lee,
J. Organomet. Chem., 2003, 679, 135–142.
17 B. X. Qian, D. L. Ward and M. R. Smith, Organometallics, 1998, 17,
3070–3076.
18 C. E. Radzewich, M. P. Coles and R. F. Jordan, J. Am. Chem. Soc.,
1998, 120, 9384–9385.
19 C. E. Radzewich, I. A. Guzei and R. F. Jordan, J. Am. Chem. Soc.,
1999, 121, 8673–8674.
20 J. A. R. Schmidt and J. Arnold, Organometallics, 2002, 21, 2306–
2313.
In summary, a new monoanionic, tridentate amido phos-
phine ligand possessing a pendant amino functionality has
been prepared and employed for the coordination chemistry
of aluminium. Both rigid o-phenylene and flexible ethylene
moieties are incorporated in the ligand backbone of [PNN]−
for the connection of the three donor atoms. The chelating
feature of [PNN]− allows for the facile isolation of a series of five-
coordinate aluminium dialkyl complexes, which represent rare
examples of structurally characterized, five-coordinate phos-
phine complexes containing the Al–C bond(s). The phosphorus
donor is trans to the dimethylamino nitrogen atom in these trig-
onal bipyramidal molecules. Diastereotopic a-hydrogen atoms
are recognized for higher aluminium-bound alkyls in which the
rotation about the Al–C bonds is comparatively hindered on
the NMR timescale. The coordination of the soft phosphorus
donor to the hard aluminium center is confirmed by both
solution NMR spectroscopy and X-ray crystallography. Studies
involving the reactivity chemistry of these new molecules will be
the subjects of further reports.
21 L.-C. Liang, M.-H. Huang and C.-H. Hung, Inorg. Chem., 2004, 43,
2166–2174.
22 M. D. Fryzuk, G. R. Giesbrecht, G. Olovsson and S. J. Rettig,
Organometallics, 1996, 15, 4832–4841.
23 L.-C. Liang, J.-M. Lin and C.-H. Hung, Organometallics, 2003, 22,
3007–3009.
24 L.-C. Liang, W.-Y. Lee and C.-H. Hung, Inorg. Chem., 2003, 42,
5471–5473.
25 L.-C. Liang, W.-Y. Lee and C.-C. Yin, Organometallics, 2004, 23,
3538–3547.
26 J. P. Wolfe, S. Wagaw, J. F. Marcoux and S. L. Buchwald, Acc. Chem.
Res., 1998, 31, 805.
27 J. F. Hartwig, Acc. Chem. Res., 1998, 31, 852.
28 M. W. Haenel, S. Oevers, J. Bruckmann, J. Kuhnigk and C. Kruger,
Synlett., 1998, 301.
29 M. Hingst, M. Tepper and O. Stelzer, Eur. J. Inorg. Chem., 1998, 73.
30 M. D. Fryzuk, G. R. Giesbrecht and S. J. Rettig, Inorg. Chem., 1998,
37, 6928–6934.
31 G. Muller, J. Lachmann and A. Rufinska, Organometallics, 1992, 11,
2970–2972.
32 P. A. Cameron, V. C. Gibson, C. Redshaw, J. A. Segal, A. J. P. White
and D. J. Williams, J. Chem. Soc., Dalton Trans., 2002, 415–422.
33 J. S. Waugh and F. A. Cotton, J. Phys. Chem., 1961, 65, 562–563.
34 R. Benn and A. Rufinska, Angew. Chem., Int. Ed. Engl., 1986,
25, 861–881; R. Benn, A. Rufinska, E. Janssen and H. Lehmkuhl,
Organometallics, 1986, 5, 825–827; R. Benn, A. Rufinska, H.
Lehmkuhl, E. Janssen and C. Kruger, Angew. Chem., Int. Ed. Engl.,
1983, 22, 779–780.
Acknowledgements
We thank the National Science Council of Taiwan for financial
support (NSC 93-2113-M-110-016) of this work and Prof.
Michael Y. Chiang (NSYSU) and Mr Ting-Shen Kuo (National
Taiwan Normal University) for crystallographic assistance.
35 We note that the multinuclear probe head gives a background signal
at ca. 60 ppm for 27Al NMR spectra. For relevant studies, see
reference 34.
36 J. J. Delpuech, NMR of Newly Accessible Nuclei, ed. P. Laszlo,
Academic Press, New York, 1983, vol. 2, pp. 153–195.
37 P. A. Cameron, V. C. Gibson, C. Redshaw, J. A. Segal, M. D. Bruce,
A. J. P. White and D. J. Williams, Chem. Commun., 1999, 1883–1884.
38 G. C. Welch, W. E. Piers, M. Parvez and R. McDonald,
Organometallics, 2004, 23, 1811–1818.
39 J. D. Masuda, D. M. Walsh, P. Wei and D. W. Stephan,
Organometallics, 2004, 23, 1819–1824.
40 M. V. Barybin, P. L. Diaconescu and C. C. Cummins, Inorg. Chem.,
2001, 40, 2892–2897.
References and notes
1 M. P. Coles and R. F. Jordan, J. Am. Chem. Soc., 1997, 119, 8125–
8126.
2 S. L. Aeilts, M. P. Coles, D. G. Swenson, R. F. Jordan and V. G.
Young, Organometallics, 1998, 17, 3265–3270.
3 P. A. Cameron, V. C. Gibson, C. Redshaw, J. A. Segal, G. A. Solan,
A. J. P. White and D. J. Williams, J. Chem. Soc., Dalton Trans., 2001,
1472–1476.
4 M. P. Coles, D. C. Swenson, R. F. Jordan and V. G. Young,
Organometallics, 1997, 16, 5183–5194.
5 F. Cosledan, P. B. Hitchcock and M. F. Lappert, Chem. Commun.,
1999, 705–706.
41 J. Lewinski, P. Horeglad, M. Dranka and I. Justyniak, Inorg. Chem.,
2004, 43, 5789–5791.
42 S. J. Trepanier and S. Wang, Organometallics, 1994, 13, 2213–
6 C. Cui, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, H. Hao and
F. Cimpoesu, Angew. Chem. Int. Ed., 2000, 39, 4272–4276.
7 S. Dagorne, I. A. Guzei, M. P. Coles and R. F. Jordan, J. Am. Chem.
Soc., 2000, 122, 274–289.
2217.
43 The only example available from the Cambridge Structure Database
is tris[o-((diphenylphosphino)methyl)phenyl]aluminium; see refer-
ence 31.
1 9 5 6
D a l t o n T r a n s . , 2 0 0 5 , 1 9 5 2 – 1 9 5 6