ꢀ
4
G. Durko, I. Jalsovszky / Tetrahedron xxx (2013) 1e4
O
O
O
O
O
O
O
O
4
4
4
3
1
1
O
5
HO
1
5
3
O
5
3
O
O
HO
2
2
2
HO
HO
6b
9
10
7b
Fig. 7. Proposed mechanism for the rearrangement of hydrogen cubane-1,4-dicarboxylate (6b).
48.1, 45.3, 43.1. IR (ATR): 1662, 1440, 939, 858, 736 cmꢀ1. HRMS: m/z
calculated for C10H8O4eHþ (MeHþ): 191.0350; found: 191.0354.
ꢃ The base effectdthe reaction was significantly accelerated by
the addition of a base, and the maximum yield was achieved at
1 equiv of base relative to the cubane diacid, which corre-
sponds to the maximum concentration of hydrogen cubane
dicarboxylate (6b). The addition of more than 1 equiv of base
diminished reaction rate, and more than 2 equiv (complete
dissociation) prevented rearrangement.
ꢃ The acid effectdrearrangement was also prevented by the
addition of a strong acid, which protonates the dissociated
forms of the cubane dicarboxylic acid.
Acknowledgements
ꢀ
We thank Dr. Andras Bartha (Geological Institute of Hungary)
ꢀ
ꢀ
ꢀ
€
€
ꢀ
and Dr. Mihaly Ovari (Eotvos Lorand University, Budapest, Hun-
ꢀ
gary) for ICP-MS analysis, and Dr. Szabolcs Beni (Semmelweis
University, Budapest, Hungary) for an HRMS measurement. The
European Union and the European Social Fund have provided fi-
nancial support to the project under the grant agreement No.
ꢃ The silver ion effectdaddition of silver(I) ions to the samples in
concentrations even 2 orders of magnitude higher than origi-
nally present, did not affect the rate of rearrangement.
ꢀ
TAMOP 4.2.1./B-09/KMR-2010-0003.
Supplementary data
4. Experimental section
Supplementary data associated with this article can be found in
These data include MOL files and InChiKeys of the most important
compounds described in this article.
All conversions were determined by 1H NMR in DMSO-d6 after
workup, using the solvent peak as an internal integration reference.
Chemical shifts (d) are given in parts per million relative to tetra-
methylsilane. NMR spectra were recorded on a BRUKER Avance 250
spectrometer (1H: 250.13 MHz, 13C: 62.9 MHz). Starting materials
were checked for trace amounts of metals (such as Ag, Pd and Li) by
ICP-MS.
References and notes
1. Paquette, L. A.; Stowell, J. C. J. Am. Chem. Soc. 1970, 92, 2584e2586.
2. Dauben, W. G.; Buzzolini, M. G.; Schallhorn, C. H.; Whalen, D. L.; Palmer, K. J.
Tetrahedron Lett. 1970, 11, 787e790.
4.1. Cubane-1,4-dicarboxylic acid (6)
3. Paquette, L. A. Synthesis 1975, 11, 347e357.
4. Bishop, K. C., III. Chem. Rev. 1976, 76, 461e486.
5. Griffin, G. W.; Marchand, A. P. Chem. Rev. 1989, 89, 997e1010.
6. Cassar, L.; Eaton, P. E.; Halpern, J. J. Am. Chem. Soc. 1970, 92, 6366e6368.
Dimethyl cubane-1,4-dicarboxylate (3a) was prepared accord-
ing to a known literature method.25 The diester was converted to
the diacid upon treatment with NaOH/H2O, then precipitated with
HCl/H2O, and washed thoroughly with distd water. The diacid was
recrystallized twice from glacial acetic acid, and was dried in vacuo
prior to use. Compound 6 is a white powder. dH (250 MHz, DMSO-
d6): 4.10 (s, 6H). dC (62.5 MHz, DMSO-d6): 172.7 (2C, carbonyl), 55.8
(2C, quaternary), 46.3 (6C, CH).
ꢀ
ꢀ
7. Roux, M. V.; Davalos, J. Z.; Jimenez, P.; Notario, R.; Castano, O.; Chickos, J. S.;
Hanshaw, W.; Zhao, H.; Rath, N.; Liebman, J. F.; Farivar, B. S.; Bashir-Hashemi, A.
J. Org. Chem. 2005, 70, 5461e5470.
ꢀ
ꢀ
8. Benyei, G.; Jalsovszky, I.; Vajda, A.; Jakli, A.; Demus, D.; Rao, S.; Prasad, K.; Fo-
dor-Csorba, K. Liq. Cryst. 2006, 33, 689e696.
9. Byrd, J. E.; Cassar, L.; Eaton, P. E.; Halpern, J. J. Chem. Soc., Chem. Commun. 1971,
40e41.
10. Moss, S.; King, B. T.; Meijere, A. de; Kozhushkov, S. I.; Eaton, P. E.; Michl, J. Org.
Lett. 2001, 3, 2375e2377.
ꢀ
11. Abboud, J.-L. M.; Koppel, I. A.; Davalos, J. Z.; Burk, P.; Koppel, I.; Quintanilla, E.
4.2. General procedure for the rearrangement of diacid 6
Angew. Chem., Int. Ed. 2003, 42, 1044e1046.
12. Schreiner, P. R.; Wittkopp, A.; Gunchenko, P. A.; Yaroshinsky, A. I.; Peleshanko,
S. A.; Fokin, A. A. Chem.dEur. J. 2001, 7, 2739e2744.
13. Fokin, A. A.; Tkachenko, B. A.; Gunchenko, P. A.; Schreiner, P. R. Angew. Chem.,
Int. Ed. 2005, 44, 146e149.
10 mg (0.052 mmol) of diacid 6 and 500 mL of 0.104 M potassium
hydroxide solution (0.052 mmol), made from deionized (conduc-
tivity grade) water, were sealed in a 2 mL glass ampoule under
argon, and heated to 135 ꢁC for 3 h. After acidification with a slight
excess of dilute hydrochloric acid, the solvent was evaporated, and
the sample was dissolved in DMSO-d6 for NMR analysis.
14. Cassar, L.; Eaton, P. E.; Halpern, J. J. Am. Chem. Soc. 1970, 92, 3515e3518.
15. Klunder, A. J. H.; Zwanenburg, B. Tetrahedron 1975, 31, 1419e1426.
16. Eaton, P. E.; Galoppini, E.; Gilardi, R. J. Am. Chem. Soc. 1994, 116, 7588e7596.
€
17. Martin, H.-D.; Pfohler, P.; Urbanek, T.; Walsh, R. Chem. Ber. 1983, 116, 1415e1421.
18. Prokudin, V. G.; Lagodzinskaya, G. V.; Dubikhin, V. V.; Nazin, G. M.; Romanova,
L. B.; Eremenko, L. T. Kinet. Catal. 2005, 46, 800e804.
€
19. Hassenruck, M.; Martin, H.-D.; Walsh, R. Chem. Ber. 1988, 121, 369e372.
4.3. Cuneane-2,6-dicarboxylic acid (7)
20. Carroll, V. M.; Harpp, D. N.; Priefer, R. Tetrahedron Lett. 2008, 49, 2677e2680.
21. Eaton, P. E.; Millikan, R.; Engel, P. J. Org. Chem. 1990, 55, 2823e2826.
22. Head, N. J.; Rasul, G.; Mitra, A.; Bashir-Heshemi, A.; Prakash, G. K. S.; Olah, G. A.
J. Am. Chem. Soc. 1995, 117, 12107e12113.
Compound 7 was prepared for reference using a method de-
scribed in the literature,7,8 and was found to be identical with the
product of the solvent-induced rearrangement of cubane diacid 6.
Pale brown powder. dH (250 MHz, DMSO-d6): 3.05e2.98 (m, 4H),
2.94 (m, 2H). dC (62.5 MHz, DMSO-d6): 176.8 (2C, carbonyl), 48.8,
23. Alderighi, L.; Gans, P.; Ienco, A.; Peters, D.; Sabatini, A.; Vacca, A. Coord. Chem.
Rev. 1999, 184, 311e318.
24. Cole, T. W.; Mayers, C. J.; Stock, L. M. J. Am. Chem. Soc. 1974, 96, 4555e4557.
25. Bliese, M.; Tsnaktsidis, J. Aust. J. Chem. 1997, 50, 189e192.
ꢀ