crobial activity than either of the parent fragments. The
potential for hybrid molecules to possess enhanced biological
activity is also supported by the recent preparation of
synthetic hybrid molecules.6 For example, a quinacrine-
netropsin hybrid molecule 2 was found to enhance C1027-
induced DNA cleavage by combining the DNA sequence
selectivity of netropsin and the cell permeability and DNA
binding affinity of quinacrine to sensitize DNA toward
C1027 cleavage.7 Further examination of hybrid molecular
structures illustrates the interchange of discrete chemical
domains. For example, the natural product fissistigmatin A
(3)8 is a eudesmane-flavone hybrid, whereas the fungal toxin
(4)9 is a eudesmane-peptide hybrid natural product. In
addition, the CDK inhibitor flavopyridol (5)10 has identifiable
flavone and piperidyl domains. Inspired by these and related
hybrid molecules, we have considered a convergent11 ap-
proach to library synthesis involving “chemical domain
shuffling”. In this approach, discrete fragments or “chemical
domains” may be “shuffled”12 to prepare complex hybrid
structures (Scheme 1). Herein, we report the successful
implementation of this approach in the construction of a
library of hybrid oximes13,14 from complex alkoxyamine and
carbonyl domains.
Scheme 1. Convergent Library Synthesis Using Chemical
Domain Shuffling
monomers included â-hydroxy alkoxyamines (6), pyrans (7-
10), carbohydrate-derived alkoxyamines (11 and 12), and
heterocyclic alkoxyamines13 (13-17). Carbonyl-containing
monomers included naphthyridines and pyridoazepines16
(18-21), complex pyrans (22-24), polyketide-like fragments
(25-27), angular scaffolds (28 and 29), benzopyrans (30),
and pipecolate esters17 (31).
Representative monomer syntheses are illustrated in
Scheme 2 (a-d). Starting from the readily available furan-
containing epoxide 32,18 phthalimide-protected alkoxyamine
33 was prepared in high yield and excellent optical purity
(95% ee) under the mediation of a Co-oligosalen catalyst.19
Subsequent phthalimide deprotection using PS-ethylenedi-
amine20 afforded alkoxyamine 13 without further purification.
For the synthesis of naphthyridine-containing ketone 18,
CpCo(CO)2-catalyzed21 intermolecular [2 + 2 + 2] cyclo-
condensation of alkynyl nitrile 3422 and diphenylacetylene
35 was conducted to afford naphthyridine 36. Yb(OTf)3-
mediated23 Michael addition of 36 to methyl vinyl ketone
provided the desired â-amino ketone 18. To prepare
polyketide-like alkoxyamine 6 and aldehyde 27, a three-
component asymmetric crotylation24 of aldehyde 37, silyl
ether 38, and chiral silane 39 was employed to prepare
To demonstrate convergent synthesis of a complex hybrid
oxime library using chemical domain shuffling, we prepared
26 monomer fragments emphasizing both structural and
stereochemical complexity. Approximately 10 chemotypes
were represented per monomer set (Figure 2).15 Alkoxyamine
(4) (a) Mehta, G.; Singh, V. Chem. Soc. ReV. 2002, 31, 324-334. (b)
Tietze, L. F.; Bell, H. P.; Chandrasekhar, S. Angew. Chem., Int. Ed. 2003,
42, 3996-4028.
(5) Shiozawa, H.; Kagasaki, T.; Kinoshita, T.; Haruyama, H.; Domon,
Y.; Utsui, Y.; Kodama, K.; Takahashi, S. J. Antibiot. 1993, 46, 1834-
1842.
(6) For examples of biologically active, synthetic hybrid molecules,
see: (a) Depew, K. M.; Zeman, S. M.; Boyer, S. H.; Denhart, D. J.; Ikenoto,
N.; Danishefsky, S. J.; Crothers, D. M. Angew. Chem., Int. Ed. Engl. 1996,
35, 2797-2800. (b) Tietze, L. F.; Schneider, G.; Wolfling, J.; Nobel, T.;
Wulff, C.; Schubert, I.; Rubeling, A. Angew. Chem., Int. Ed. 1998, 37,
2469-2470. (c) Tietze, L. F.; Schneider, G.; Wolfling, J.; Fecher, A.; Nobel,
T.; Petersen, S.; Schuberth, I.; Wulff, C. Chem. Eur. J. 2000, 6, 3755-
3760. (d) Hoppen, S.; Emde, U.; Friedrich, T.; Grubert, L.; Koert, U. Angew.
Chem., Int. Ed. 2000, 39, 2099-2102. (e) Link, J. T.; Sorensen, B.; Liu,
G.; Pei, Z.; Reilly, E. B.; Leitza, S.; Okasinski, G.; Bioorg. Med. Chem.
Lett. 2001, 11, 973-976. (f) Jones, G. B.; Hynd, G.; Wright, J. M.; Purohit,
A.; Plourde, G. M., II; Huber, R. S.; Mathews, J. E.; Li, A.; Kilgore, M.
W.; Bubley, G. J.; Yancisin, M.; Brown, M. A. J. Org. Chem. 2001, 66,
3688-3695.
(13) Su, S.; Giguere, J. R.; Schaus, S. E.; Porco, J. A., Jr. Tetrahedron
2004, 39, 8645-8657.
(14) For library syntheses employing alkoxyamines as diversity reagents,
see: (a) Nazarpack-Kandlousy, N.; Zweigenbaum, J.; Henion, J.; Eliseev,
A. V. J. Comb. Chem. 1999, 1, 199-206. (b) Maly, D. J.; Choong, I. C.;
Ellman, J. A. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 2419-2424. (c) Pelish,
H. E.; Westwood, N. J.; Feng, Y.; Kirchhausen, T.; Shair, M. D. J. Am.
Chem. Soc. 2001, 123, 6740-6741. (d) Armstrong, J. I.; Ge, X.; Verdugo,
D. E.; Winans, K. A.; Leary, J. A.; Bertozzi, C. R. Org. Lett. 2001, 3,
2657-2660. (e) Salisbury, C. M.; Maly, D. J.; Ellman, J. A. J. Am. Chem.
Soc. 2002, 124, 14868-14870. (f) Kehoe, J. W.; Maly, D. J.; Verdugo, D.
E.; Armstrong, J. I.; Cook, B. N.; Ouyang, Y.; Moore, K. L.; Ellman, J.
A.; Bertozzi, C. R. Bioorg. Med. Chem. Lett. 2002, 12, 329-332. (g) Wipf,
P.; Reeves, J. T.; Balachandran, R.; Day, B. W. J. Med. Chem. 2002, 45,
1901-1917.
(7) Iwamoto, T.; Hiraku, Y.; Kojima, M.; Kawanishi,S. Arch. Biochem.
Biophys. 2005, 434, 232-240.
(8) Porzel, A.; Lien, T. P.; Schmidt, J.; Drosihn, S.; Wanger, C.;
Merzweiler, K.; Van Sung, T.; Adam, G. Tetrahedron 2000, 56, 865-872.
(9) Pedras, M. S. C.; Chumala, P. B.; Quail, J. W. Org. Lett. 2004, 6,
4615-4617.
(10) Kelland, L. R. CRC Expert Opin. InVest. Drugs 2000, 9, 2903-
2911.
(15) See the Supporting Information for details.
(16) Lahue, B. R.; Lo, S.-M.; Wan, Z.-K.; Woo, G. H. C.; Snyder, J. K.
J. Org. Chem. 2004, 69, 7171-7182.
(11) Examples of convergent library synthesis: (a) Tong, G.; Nielsen,
J. Bioorg. Med. Chem. 1996, 4, 693-698. (b) Baldino, C. M.; Casebier, D.
S.; Caserta, J.; Slobodkin, G.; Tu, C.; Coffen, D. L. Synlett 1997, 5, 488-
490. (c) Boger, D. L.; Chai, W.; Jin, Q. J. Am. Chem. Soc. 1998, 120,
7220-7225. (d) Powers, D. G.; Casebier, D. S.; Fokas, D.; Ryan, W. J.;
Troth, J. R.; Coffen, D. L. Tetrahedron 1998, 54, 4085-4096. (e) Boger,
D. L.; Jiang, W.; Goldberg, J. J. Org. Chem. 1999, 64, 7094-7100. (f)
Ahn, J. M.; Janda, K. D.; Wentworth, P., Jr.; Ahn, J. Chem. Commun. 2003,
4, 480-481. (g) Chen, T.; Li, X. D.; Neumann, C. S.; Lo, M. M.-C.;
Schreiber, S. L. Angew. Chem., Int. Ed. 2005, 44, 2249-2252.
(12) For seminal work on the shuffling of chemical domains using
enzymatic engineering, see: Tsoi, C. J.; Khosla, C. Chem. Biol. 1995, 2,
355-362.
(17) Huang, H.; Spande, T. F.; Panek, J. S. J. Am. Chem. Soc. 2003,
125, 626-627.
(18) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science
1997, 277, 936-938.
(19) Ready, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 2687-
2688.
(20) (a) Stangier, P.; Hindsgaul, O. Synlett 1996, 2, 179-181. (b) Parlow,
J. J.; Mischke, D. A.; Woodard, S. S. J. Org. Chem. 1997, 62, 5908-5919.
(21) Varela, J. A.; Saa, C. Chem. ReV. 2003, 103, 3787-3802.
(22) Mrinal, K.; Bhat, S. V. Synth. Commun. 1999, 29, 93-101.
(23) Matsubara, S.; Yoshioka, M.; Utimoto, K. Chem. Lett. 1994, 5, 827-
830.
2752
Org. Lett., Vol. 7, No. 13, 2005