Q.-Z. Zhou et al. / Tetrahedron 61 (2005) 7117–7124
7123
2. Venkatraman, J.; Shankaramma, S. C.; Balaram, P. Chem. Rev.
2001, 101, 3131–3152.
and Pd–C (10%, 0.30 g) in methanol (30 mL) and chloro-
form (30 mL) was stirred at 1 atm of hydrogen gas for 5 h.
After work-up, the crude product was subjected to flash
chromatography (chloroform/methanol 15:1) to give 27 as a
white solid (1.20 g, 95%). Mp 184–186 8C. 1H NMR
(CDCl3): d 8.36 (s, 2H), 8.32 (s, 2H), 7.36 (s, 5H), 4.36–
4.57 (m, 12H), 3.74–3.76 (s, 6H), 1.70–1.71 (m, 2H), 1.25–
1.32 (m, 18H), 0.87 (t, 3H). MS (MALDI): 867 [MCNa]C.
HRMS (MALDI): Calcd for C42H44N4O15: 844.2803.
Found: 844.2798.
3. (a) Zimmerman, S. C.; Corbin, P. S. Struct. Bonding 2000, 96,
63–94. (b) Archer, E. A.; Gong, H.; Krische, M. J. Tetrahedron
2000, 57, 1139–1159. (c) Gong, B. Synlett 2001, 5, 582–589.
4. (a) Sessler, J. L.; Wang, R. Angew. Chem., Int. Ed. 1998, 37,
1726–1729. (b) Lu¨ning, U.; Ku¨hl, C. Tetrahedron Lett. 1998,
39, 5735–5738. (c) Beijer, F. H.; Sijbesma, R. P.; Kooijman,
H.; Spek, A. L.; Meijer, E. W. J. Am. Chem. Soc. 1998, 120,
6761–6767. (d) Gong, B.; Yang, Y.; Zeng, H.; Skrzypczak-
Jankunn, E.; Kim, Y. W.; Zhu, J.; Ickes, H. J. Am. Chem. Soc.
1999, 121, 5607–5608. (e) Corbin, P. S.; Zimmerman, S. C.;
Thiessen, P. A.; Hawryluk, N. A.; Murray, T. J. J. Am. Chem.
Soc. 2001, 123, 10475–10488. (f) Carver, F. J.; Hunter, C. A.;
Jones, P. S.; Livingstone, D. J.; McCabe, J. F.; Seward, E. M.;
Tiger, P.; Spey, S. E. Chem. Eur. J. 2001, 7, 4854–4862.
(g) Zhao, X.; Wang, X.-Z.; Jiang, X.-K.; Chen, Y.-Q.; Li,
Z.-T.; Chen, G.-J. J. Am. Chem. Soc. 2003, 125, 15128–15139.
5. Lehn, J.-M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
4763–4768.
4.1.15. Compound 15. A suspension of compound 27
(0.84 g, 1.00 mmol) in thionyl chloride (10 mL) and
benzene (50 mL) was heated under reflux for 6 h and then
concentrated in vacuo to give acyl chloride 28. Without
further purification, this crude product was dissolved in
chloroform (10 mL) and the solution was added dropwise to
a stirred solution of 22 (0.53 g, 1.00 mmol), triethylamine
(0.5 mL), DMAP (0.05 g) in chloroform (50 mL). Stirring
was continued for 48 h at room temperature and chloroform
(50 mL) was added. The solution was washed with dilute
hydrochloric acid (1 N, 50 mL!2), water (50 mL), brine
(50 mL), and dried over sodium sulfate. Upon removal of
the solvent under reduced pressure, the resulting residue was
subjected to column chromatography (chloroform/AcOEt
3:1) to afford compound 15 as a white solid (0.27 g, 20%).
Mp 204 8C. 1H NMR (CDCl3): d 8.38 (s, 2H), 8.32 (s, 4H),
4.58 (d, JZ2.7 Hz, 8H), 4.36 (t, JZ4.5 Hz, 8H), 3.71–3.76
(m, 12H), 1.68–1.69 (m, 4H), 1.25–1.33 (m, 36H), 0.88 (t,
JZ6.3 Hz, 6H). MS (MALDI): m/z: 1379 [MCNa]C.
HRMS (MALDI): Calcd for C70H80N6O22: 1356.5326.
Found: 1356.5320. Anal. Calcd for C70H80N6O22: C,
61.94; H, 5.94; N, 6.19. Found: C, 61.57; H, 5.81; N, 6.02.
6. (a) Taylor, P. N.; Anderson, H. L. J. Am. Chem. Soc. 1999,
121, 11538–11545. (b) Tanaka, K.; Tengeiji, A.; Kato, T.;
Toyama, N.; Shiro, M.; Shionoya, M. J. Am. Chem. Soc. 2002,
124, 12494–12498. (c) Barboiu, M.; Vaughan, G.; Kyritsakas,
N.; Lehn, J.-M. Chem. Eur. J. 2003, 9, 763–769.
7. (a) Sanchez-Quesada, J.; Seel, C.; Prados, P.; de Mendoza, J.;
Dalcol, I.; Giralt, E. J. Am. Chem. Soc. 1996, 118, 277–278.
(b) Schmuck, C.; Wienand, W. J. Am. Chem. Soc. 2003, 125,
452–459. (c) Schmuck, C.; Geiger, L. J. Am. Chem. Soc. 2004,
126, 8898–8899.
8. Anelli, P. L.; Ashton, P. R.; Ballardini, R.; Balzani, V.;
Delgado, M.; Gandolfi, M. T.; Goodnow, T. T.; Kaifer, A. E.;
Philp, D.; Pietraszkiewicz, M.; Prodi, L.; Reddington, M. V.;
Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Vicent, C.;
Williams, D. J. J. Am. Chem. Soc. 1992, 114, 193–218.
9. (a) Amabilino, D. B.; Stoddart, J. F. Chem. Rev. 1995, 95,
2725–2828. (b) Philp, D.; Stoddart, J. F. Angew. Chem., Int.
Ed. 1996, 35, 1154. (c) Fyfe, M. C. T.; Stoddart, J. S. Acc.
Chem. Res. 1997, 30, 393. (d) Raymo, F. M.; Stoddart, J. F.
Chem. Rev. 1999, 99, 1643–1664.
4.2. Computational method
The binding patterns were constructed with the Builder
program within the package HyperChem.31 Then they were
optimized by the conjugate gradient with the AMBER force
field and the RMS derivative criteria of 0.00001 kcal/mol.
To explore the lower energy structure, molecular dynamics
calculations were performed without constraints. After
100 ps of molecular dynamics simulation, an additional
round of energy minimization was again completed.
Molecular mechanics and molecular dynamics are used to
obtain the geometry of the dimers.32
10. Raehm, L.; Hamilton, D. G.; Sanders, J. K. M. Synlett 2002,
1743–1761.
11. (a) Wu¨rthner, F. Chem. Commun. 2004, 1564–1579.
(b) Neuteboom, E. E.; Beckers, E. H. A.; Meskers, S. C. J.;
Meijer, E. W.; Janssen, R. A. J. Org. Biomol. Chem. 2003, 1,
198–203. (c) Vignon, S. A.; Jarrosson, T.; Iijima, T.; Tseng,
H.-R.; Sanders, J. K. M.; Stoddart, J. F. J. Am. Chem. Soc.
2004, 126, 9884–9885. (d) Weiss, E. A.; Chernick, E. T.;
Wasielewski, M. R. J. Am. Chem. Soc. 2004, 126, 2326–2327.
12. (a) Guelev, V.; Sorey, S.; Hoffman, D.; Iverson, B. L. J. Am.
Chem. Soc. 2002, 124, 2864–2865. (b) Gabriel, G. J.; Iverson,
B. L. J. Am. Chem. Soc. 2002, 124, 15174–15175.
Acknowledgements
We thank the Ministry of Science and Technology
(G2000078101), the National Natural Science Foundation
and the Chinese Academy of Sciences of China for financial
support.
13. Zhou, Q.-Z.; Jiang, X.-K.; Shao, X.-B.; Chen, G.-J.; Jia, M.-X.;
Li, Z.-T. Org. Lett. 2003, 5, 1955–1958.
14. For recent examples of the application of the donor–acceptor
interaction between neutral aromatic units for the self-
assembly of other kinds of supramolecular structures, see:
(a) Cubberley, M. S.; Iverson, B. L. J. Am. Chem. Soc. 2001,
123, 7560–7563. (b) Zhao, X.; Jia, M.-X.; Jiang, X.-K.; Wu,
L.-Z.; Li, Z.-T.; Chen, G.-J. J. Org. Chem. 2004, 69, 270–279.
(c) Hansen, J. G.; Feeder, N.; Hamilton, D. G.; Gunter, M. J.;
Becher, J.; Sanders, J. K. M. Org. Lett. 2000, 2, 449–452.
(d) Wang, X.-Z.; Li, X.-Q.; Chen, Y.-Q.; Shao, X.-B.; Zhao,
References and notes
1. Horton, R. H.; Moran, L. A.; Ochs, R. S.; Rawn, D. J.;
Scrimgeour, G. K. Principles of Biochemistry; Prentice Hall:
London, 1992.