triple helix containing a native backbone. The results provide
new information on the contribution of the prevalent inter-
strand hydrogen bonds to triple helix stability and differenti-
ate between an ester and (E)-alkene as an amide bond isostere
in this context.
In previous work, we determined that the H/D fractionation
factors of the GlyN-H‚‚‚OdCXaa hydrogen bonds in
(ProProGly)10 and (ProHypGly)10 triple helices were not
distinguishable, suggesting that the GlyN-H‚‚‚OdCXaa
hydrogen bonds have a similar strength in these two
contexts.12 Accordingly, we limit our analysis herein to
isosteres of (ProProGly)10. Also in previous work, we
reported a five-step synthesis for FmocProFlpGly (where Flp
refers to (2S,4R)-4-fluoroproline) based on standard Boc
chemistry with an average overall yield of 17%.13 We have
now made this route more efficient by eliminating the need
to switch from a Boc to Fmoc protecting group. Following
the route in Scheme 1 and monitoring the hydrogenolysis
Scheme 1
Figure 1. Interstrand hydrogen bond in the middle of a collagen
triple helix, and ester and (E)-alkene isosteres of the hydrogen bond
donor.
functional groups have distinct electronic properties.8 Ac-
cordingly, hydrogen bond strengths obtained by ester sub-
stitutions are estimates that, nonetheless, have been infor-
mative.4
An alternative approach is to replace the amide NH with
an alkene CH.9 This approach is beyond the realm of
biosynthesis.10 Although alkene isosteres have been incor-
porated into peptides by chemical synthesis,11 we are not
aware of a comparison between an ester and alkene as a
surrogate for an amide that forms a solvent-inaccessible
main-chain-main-chain hydrogen bond.
Here, we synthesize collagen strands in which a single
amide bond is replaced with an ester (depsipeptide 1) or (E)-
alkene (alkenyl peptide 2). We compare the conformational
stability of the resulting triple helices with that of a collagen
(10) Nilsson, B. L.; Soellner, M. B.; Raines, R. T. Annu. ReV. Biophys.
Biomolec. Struct. 2005, 34, 91-118.
(11) For examples, see: (a) Johnson, R. L. J. Med. Chem. 1984, 27,
1351-1354. (b) Gardner, R. R.; Liang, G.-B.; Gellman, S. H. J. Am. Chem.
Soc. 1995, 117, 3280-3281. (c) Masse, C. E.; Knight, B. S.; Stavropoulos,
P.; Panek, J. S. J. Am. Chem. Soc. 1997, 119, 6040-6047. (d) Wipf, P.;
Henninger, T. C.; Geib, S. J. J. Org. Chem. 1998, 63, 6088-6089. (e)
Gardner, R. R.; Liang, G.-B.; Gellman, S. H. J. Am. Chem. Soc. 1999, 121,
1806-1816. (f) Oishi, S.; Kamano, T.; Niida, A.; Odagaki, Y.; Hamanaka,
N.; Yamamoto, M.; Ajito, K.; Tamamura, H.; Otaka, A.; Fujii, N. J. Org.
Chem. 2002, 67, 6162-6173. (g) Tamamura, H.; Hiramatsu, K.; Miyamoto,
K.; Omagari, A.; Oishi, S.; Nakashima, H.; Yamamoto, N.; Kuroda, Y.;
Nakagawa, T.; Otaka, A.; Fujii, N. Bioorg. Med. Chem. Lett. 2002, 12,
923-928. (h) Vasbinder, M. M.; Miller, S. J. J. Org. Chem. 2002, 67, 6240-
6242. (i) Tamamura, H.; Koh, Y.; Ueda, S.; Sasaki, Y.; Yamasaki, T.; Aoiki,
M.; Maeda, K.; Watai, Y.; Arikuni, H.; Otaka, A.; Mitsuya, H.; Fujii, N. J.
Med. Chem. 2003, 46, 1764-1768. (j) Wang, X. J.; Hart, S. A.; Xu, B.;
Mason, M. D.; Goodell, J. R.; Etzkorn, F. A. J. Org. Chem. 2003, 68, 2343-
2349. (k) Wipf, P.; Xiao, J. Org. Lett. 2005, 7, 103-106.
(6) Karle, I. L.; Das, C.; Balaram, P. Biopolymers 2001, 59, 276-289.
(7) Mammi, S.; Goodman, M. Int. J. Peptide Protein Res. 1986, 28, 29-
44.
(8) For example, an n f σ* interaction between the “ether” O and
“carbonyl” CdO stabilizes the Z conformation of esters. Pawar, D. M.;
Khalil, A. A.; Hooks, D. R.; Collins, K.; Elliott, T.; Stafford, J.; Smith, L.;
Noe, E. A. J. Am. Chem. Soc. 1998, 120, 2108-2112.
(9) (a) Hann, M. M.; Sammes, P. G.; Kennewell, P. D.; Taylor, J. B.
Chem. Commun. 1980, 234-235. (b) Wipf, P.; Fritch, P. C. J. Org. Chem.
1994, 59, 4875-4886.
(12) Danielson, M. A.; Raines, R. T. In Peptides for the New Millen-
nium: Proceedings of the Sixteenth American Peptide Symposium; Fields,
G. B., Tam, J. P., Barany, G., Eds.; Kluwer Academic: Dordrecht, The
Netherlands, 2000; pp 347-348.
(13) (a) Holmgren, S. K.; Taylor, K. M.; Bretscher, L. E.; Raines, R. T.
Nature 1998, 392, 666-667. (b) Holmgren, S. K.; Bretscher, L. E.; Taylor,
K. M.; Raines, R. T. Chem. Biol. 1999, 6, 63-70.
2620
Org. Lett., Vol. 7, No. 13, 2005