1866
D. Kiderlen et al. / Biochemical Pharmacology 69 (2005) 1853–1867
[15] Gan KN, Smolen A, Eckerson HW, La Du BN. Purification of human
serum paraoxonase/arylesterase. Evidence for one esterase catalyzing
both activities. Drug Metab Dispos 1991;19:100–6.
with AChE-reactivation). These two examples may be
taken as a first hint, pointing to the relevance of POX-
hydrolase activity for optimal effectiveness of obidoxime
therapy. Thus, the PON1-polymorphism seems to be a
further factor, which may influence the therapeutic success
in organophosphate poisoning.
[16] Worek F, Mast U, Kiderlen D, Diepold C, Eyer P. Improved determi-
nation of acetylcholinesterase activity in human whole blood. Clin
Chim Acta 1999;288:73–90.
[17] Kiderlen D, Meischner V, Worek F, Eyer P. Phosphoryl oxime-
hydrolase in human serum influences oxime effectiveness in organo-
phosphate poisoning. Drug Metab Rev 2001;33(Suppl. 1):110.
[18] Eckerson HW, Wyte CM, La Du BN. The human serum paraoxonase/
arylesterase polymorphism. Am J Hum Genet 1983;35:1126–38.
[19] Junge W, Klees H. Arylesterase. Weinheim: Verlag Chemie, 1984.
Acknowledgements
¨
[20] Spohrer U, Eyer P. Separation of geometrical syn/anti isomers of
The authors are indebted to Prof. Patrick Masson (La
Tronche, France) for providing us with purified human
PON1, type AA, and to Prof. Gabriele Sabbioni (Walther-
Straub-Institute) for the mass spectrometry. We are grateful
to R. Heilmair for her skilful and engaged technical
assistance.
obidoxime by ion-pair high-performance liquid chromatography. J
Chromatogr A 1995;693:55–61.
[21] Eyer P, Kawan A, Ladstetter B. Formation of cyanide after i.v. admin-
istration of the oxime HI 6 to dogs. Arch Toxicol 1987;61:63–9.
[22] Nagashima S. Spectrophotometric determination of cyanide with
sodium isonicotinate and sodium barbiturate. Anal Chim Acta
1978;99:197–201.
[23] Steinberg GM, Solomon S. Decomposition of a phosphonylated
pyridinium aldoxime in aqueous solution. Biochemistry 1966;5:
3142–50.
References
¨
[24] Bernasconi R. Untersuchungen u¨ber die Stabilitat von N,N-Dimethy-
¨ ¨
lenoxid-bis-(pyridinium-4-aldoxim)-dichlorid in waßriger Losung.
[1] Jeyaratnam J. Acute pesticide poisoning: A major global health
problem. World Health Stat Q 1990;43:139–44.
Pharm Acta Helv 1965;40:564–74.
[25] Hagedorn I, Gu¨ndel WH, Schoene K. Reaktivierung phosphorylierter
Acetylcholinesterase mit Oximen: Beitrag zum Studium des Reak-
tionsablaufes. Arzneim-Forsch 1969;19:603–6.
[2] Eyer P. The role of oximes in the management of organophosphorus
pesticide poisoning. Toxicol Rev 2003;22:165–90.
[3] Green AL, Saville B. The reaction of oximes with isopropyl methyl-
phosphonofluoridate (sarin). J Chem Soc 1956;3:3887–92.
[4] Hackley Jr BE, Steinberg GM, Lamb JC. Formation of potent inhibitors
of AChE by reaction of pyridinaldoximes with isopropyl methylpho-
sphonofluoridate (GB). Arch Biochem Biophys 1959;80:211–4.
[5] Portmann R, Niederhauser A, Hofmann W, Frey A, Stoeckli-Evans H.
32. Synthesis of 4-(([(isopropyloxy)methylphosphoryloxy]imino)-
methyl)-1-methylpyridinium iodide and its characterisation. Helv
Chim Acta 1991;74:331–5.
[26] Kiderlen D. On the phosphoryl oxime hydrolase of plasma, an enzyme
that markedly increases the efficacy of oximes in organophosphate
poisoning. Doctoral Thesis. Munich: Ludwig-Maximilians-Univer-
sity; 2004.
¨
[27] Erdos EG, Debay CR, Westerman MP. Arylesterases in blood: Effect
of calcium and inhibitors. Biochem Pharmacol 1960;5:173–86.
[28] Josse D, Xie W, Masson P, Schopfer LM, Lockridge O. Tryptophane
residue(s) as major components of the human serum paraoxonase
active site. Chem Biol Interact 1999;119–120:79–84.
[6] Becker G, Kawan A, Szinicz L. Direct reaction of oximes with sarin,
soman, or tabun in vitro. Arch Toxicol 1997;71:714–8.
[7] Leader H, Vincze A, Manisterski B, Rothschild N, Dosoretz C, Ashani
Y. Characterization of O,O-diethylphosphoryl oximes as inhibitors of
cholinesterases and substrates of phosphotriesterases. Biochem Phar-
macol 1999;58:503–15.
[29] Josse D, Xie W, Masson P, Lockridge O. Human serum paraoxonase
(PON 1): Identification of essential amino acid residues by group-
selective labelling and site-directed mutagenesis. Chem Biol Interact
1999;119–120:71–8.
[30] Kuo C-L, La Du BN. Calcium binding by human and rabbit serum
paraoxonases. Structural stability and enzymatic activity. Am Soc
Pharmacol Exp Ther 1998;26:653–60.
[8] Luo C, Saxena A, Smith M, Garcia G, Radic Z, Taylor P, et al.
Phosphoryl oxime inhibition of acetylcholinesterase during oxime
reactivation is prevented by edrophonium. Biochemistry 1999;38:
9937–47.
[31] Spande TF, Witkop B. Determination of the tryptophan content of
proteins with N-bromosuccinimide. Meth Enzymol 1967;11:498–506.
[32] Lundblad RL. Chemical reagents for protein modification, 2nd ed.
Boca Raton: CRC Press, 1991.
[9] Lamb JC, Steinberg GM, Hackley JBE. Isopropyl methylphosphony-
lated bisquaternary oximes; powerful inhibitors of cholinesterase.
Biochim Biophys Acta 1964;89:174–6.
¨
[33] Schoene K. Reaktivierung von O,O-Diathylphosphoryl-Acetylcholin-
esterase. Reaktivierungs-Rephosphorylierungs-Gleichgewicht. Bio-
chem Pharmacol 1972;21:163–70.
[10] Nenner M. Phosphonylierte Aldoxime. Hemmwirkung auf Acetyl-
cholinesterase und hydrolytischer Abbau. Biochem Pharmacol
1974;23:1255–62.
[34] Waser PG, Alioth-Streichenberg CM, Hopff WH, Portmann R, Hof-
mann W, Niederhauser A. Interaction of obidoxime with sarin in
aqueous solution. Arch Toxicol 1992;66:211–5.
[11] De Jong LPA. Ceulen DI. Anticholinesterase activity and rate of
decomposition of some phosphylated oximes. Biochem Pharmacol
1978;27:857–63.
[35] Kosower EM, Patton JW. The products and kinetics of hydrolysis of
cyanopyridinium ions. Tetrahedron 1966;22:2081–93.
[36] Harvey B, Scott RP, Sellers DJ, Watts P. In vitro studies on the
reactivation by oximes of phosphylated acetylcholinesterase. I. On
the reactions of P2S with various organophosphates and the properties
of the resultant phosphylated oximes. Biochem Pharmacol 1986;35:
737–44.
[12] Harvey B, Scott RP, Sellers DJ, Watts P. In vitro studies on the
reactivation by oximes of phosphylated acetylcholinesterase. I. On
the reactions of P2S with various organophosphates and the properties
of the resultant phosphylated oximes. Biochem Pharmacol
1986;35:737–44.
[13] Kiderlen D, Worek F, Klimmek R, Eyer P. The phosphoryl oxime-
destroying activity of human plasma. Arch Toxicol 2000;74:27–32.
[14] Masson P, Froment M-T, Bartels CF, Lockridge O. Importance of
aspartate-70 in organophosphate inhibition, oxime re-activation and
aging in human butyrylcholinesterase. Biochem J 1997;325:53–61.
[37] Ashani Y, Leader H, Rothschild N, Dosoretz C. Combined effect of
organophosphorus hydrolase and oxime on the reactivation rate of
diethylphosphoryl-acetylcholinesterase conjugates. Biochem Pharma-
col 1998;55:159–68.