ether products resulting from C–O bond-forming reaction was
observed, although tosylhydrazones have been recently reported
to provide reductive etherification with alcohols.17
Finally, extending this chemistry to include azoles 2n–p as
substrates proved to be quite successful, with tosylhydrazones
derived from aromatic ketones (entries 19–21) as well as aliphatic
aldehydes (entry 22) and ketones (entry 23). Thus, imidazole,
benzimidazole and pyrazole also underwent a C–N bond forming
reaction providing coupling products 3s–w in satisfactory to good
yields.
Although there is no clear experimental evidence, we suppose
that the reaction proceeds as shown in Scheme 2. Initially, N-
tosylhydrazone 1 in basic media undergoes thermal decompo-
sition through the Bamford–Stevens reaction to generate diazo
compound II followed by in situ reduction of Cu(II) by II into the
active catalytic Cu(I) species III.23 This latter would react with II to
give the copper(I) carbene complex24 IV. Further copper carbene
N–H insertion might proceed with attack of the nitrogen atom on
the electrophilic carbene to generate copper species V, followed by
hydrogen transfer25 to produce amine 3.
C. M. Arbeeny and R. E. Gregg, Bioorg. Med. Chem. Lett., 2001, 11,
3035–3039.
2 M. P. Curran, L. J. Scott and C. M. Perry, Drugs, 2004, 64, 523–561.
3 H. Hara, N. Toriu and M. Shimazawa, Cardiovasc. Drug Rev., 2004, 22,
199–214.
4 H. Mouridsen, M. Gershanovich, Y. Sun, R. n. Perez-Carrion, C. Boni,
A. Monnier, J. Apffelstaedt, R. Smith, H. P. Sleeboom, F. Jaenicke, A.
Pluzanska, M. Dank, D. Becquart, P. P. Bapsy, E. Salminen, R. Snyder,
H. Chaudri-Ross, R. Lang, P. Wyld and A. Bhatnagar, J. Clin. Oncol.,
2003, 21, 2101–2109.
5 (a) B. Hatano, J.-I. Kadokawa and H. Tagaya, Tetrahedron Lett.,
2002, 43, 5859–5861; (b) F. Shibahara, R. Sugiura, E. Yamaguchi, A.
Kitagawa and T. Murai, J. Org. Chem., 2009, 74, 3566–3568.
6 (a) A. F. Abdel-Magid, K. G. Carson, B. D. Harris, C. A. Maryanoff
and R. D. Shah, J. Org. Chem., 1996, 61, 3849–3862; (b) T. H. Jones
and M. S. Blum, J. Org. Chem., 1980, 45, 4778–4780; (c) O. Provot, J. P.
Ce´le´rier, H. Petit and G. Lhommet, J. Org. Chem., 1992, 57, 2163–2166.
7 (a) N. Cabello, J.-C. Kizirian and A. Alexakis, Tetrahedron Lett., 2004,
45, 4639–4642; (b) D. Ferraris, Tetrahedron, 2007, 63, 9581–9597.
8 (a) H. Bo¨hme and P. Plappert, Chem. Ber., 1975, 108, 2827–2833; (b) N.
Plobeck and D. Powell, Tetrahedron: Asymmetry, 2002, 13, 303–310.
9 K. Schiemann and H. D. H. Showalter, J. Org. Chem., 1999, 64, 4972–
4975.
10 M. Sekiguchi, A. Ogawa, S.-I. Fujiwara, I. Ryu, N. Kambe and N.
Sonoda, Chem. Lett., 1990, 19, 2053–2056.
11 T. Murai, K. Ui and Narengerile, J. Org. Chem., 2009, 74, 5703–5706.
12 S. Jolidon, D. Alberati, A. Dowle, H. Fischer, D. Hainzl, R. Narquizian,
R. Norcross and E. Pinard, Bioorg. Med. Chem. Lett., 2008, 18, 5533–
5536.
13 (a) C. Haurena, E. Le Gall, S. p. Sengmany, T. Martens and M. Troupel,
J. Org. Chem., 2010, 75, 2645–2650; (b) E. Le Gall, C. Haurena, S.
p. Sengmany, T. Martens and M. Troupel, J. Org. Chem., 2009, 74,
7970–7973; (c) E. Le Gall, M. Troupel and J.-Y. Ne´de´lec, Tetrahedron,
2006, 62, 9953–9965; (d) E. Le Gall, M. Troupel and J.-Y. Ne´de´lec,
Tetrahedron Lett., 2006, 47, 2497–2500; (e) S. Sengmany, E. Le Gall,
C. Le Jean, M. Troupel and J.-Y. Ne´de´lec, Tetrahedron, 2007, 63, 3672–
3681.
14 For transition metal-catalyzed hydromination of styrenes, see: M.
Utsunomiya and J. F. Hartwig, J. Am. Chem. Soc., 2003, 125, 14286–
14287.
15 J. R. Fulton, V. K. Aggarwal and J. de Vicente, Eur. J. Org. Chem.,
2005, 1479–1492.
Scheme 2 Proposed mechanism for the Cu-catalyzed reductive coupling
of N-tosylhydrazones 1 with amines.
16 (a) J. Barluenga, P. Moriel, C. Valdes and F. Aznar, Angew. Chem.,
Int. Ed., 2007, 46, 5587–5590; (b) J. Barluenga, M. Tomas-Gamasa, P.
Moriel, F. Aznar and C. Valdes, Chem.–Eur. J., 2008, 14, 4792–4795;
(c) W.-Y. Yu, Y.-T. Tsoi, Z. Zhou and A. S. C. Chan, Org. Lett., 2008,
11, 469–472; (d) J. Barluenga, M. Escribano, P. Moriel, F. Aznar and
C. Valdes, Chem.–Eur. J., 2009, 15, 13291–13294; (e) J. Barluenga, M.
Tomas-Gamasa, F. Aznar and C. Valdes, Nat. Chem., 2009, 1, 494–499;
(f) Q. Xiao, J. Ma, Y. Yang, Y. Zhang and J. Wang, Org. Lett., 2009,
11, 4732–4735; (g) J. Barluenga, M. Tomas-Gamasa, F. Aznar and C.
Valdes, Chem.–Eur. J., 2010, 16, 12801–12803; (h) J. Barluenga, M.
Toma´s-Gamasa, F. Aznar and C. Valde´s, Adv. Synth. Catal., 2010, 352,
3235–3240; (i) X. Zhao, J. Jing, K. Lu, Y. Zhang and J. Wang, Chem.
Commun., 2010, 46, 1724–1726; (j) X. Zhao, G. Wu, C. Yan, K. Lu, H.
Li, Y. Zhang and J. Wang, Org. Lett., 2010, 12, 5580–5583; (k) L. Zhou,
F. Ye, Y. Zhang and J. Wang, J. Am. Chem. Soc., 2010, 132, 13590–
13591; (l) J. Barluenga, L. Florentino, F. Aznar and C. Valdes, Org.
Lett., 2011, 13, 510–513; (m) X. Zhao, G. Wu, Y. Zhang and J. Wang,
J. Am. Chem. Soc., 2011, 133, 3296–3299; (n) L. Zhou, F. Ye, J. Ma, Y.
Zhang and J. Wang, Angew. Chem., Int. Ed., 2011, 50, 3510–3514.
17 J. Barluenga, M. Tomas-Gamasa, F. Aznar and C. Valdes, Angew.
Chem., Int. Ed., 2010, 49, 4993–4996.
18 (a) X.-W. Feng, J. Wang, J. Zhang, J. Yang, N. Wang and X.-Q. Yu,
Org. Lett., 2010, 12, 4408–4411; (b) J. Barluenga, M. Toma´s-Gamasa,
F. Aznar and C. Valde´s, Eur. J. Org. Chem., 2011, 1520–1526; (c) Q.
Ding, B. Cao, J. Yuan, X. Liu and Y. Peng, Org. Biomol. Chem., 2011,
9, 748–751.
19 E. Cuevas-Yan˜ez, J. M. Serrano, G. Huerta, J. M. Muchowski and R.
Cruz-Almanza, Tetrahedron, 2004, 60, 9391–9396.
20 (a) B. Treguier, A. Hamze, O. Provot, J.-D. Brion and M. Alami,
Tetrahedron Lett., 2009, 50, 6549–6552; (b) E. Brachet, A. Hamze,
J.-F. Peyrat, J.-D. Brion and M. Alami, Org. Lett., 2010, 12, 4042–
4045; (c) E. Rasolofonjatovo, B. Tre´guier, O. Provot, A. Hamze, E.
Morvan, J.-D. Brion and M. Alami, Tetrahedron Lett., 2011, 52,
In summary, we have demonstrated that the reductive coupling
of tosylhydrazones with amines in presence of Cs2CO3 and a
catalytic amount of Cu(acac)2 represents a general, operationally
simple, inexpensive and efficient approach for the synthesis of
aryl- and diarylmethylamine derivatives. A variety of amines,
including primary and secondary aliphatic amines as well as azole
derivatives were used successfully. It is particularly noteworthy that
this protocol is chemoselective allowing amino alcohols to react
with hydrazones to give exclusively C–N bond forming products.
Further development of this coupling methodology is under way.
Notes and references
1 (a) W. N. Washburn, C. Q. Sun, G. Bisacchi, G. Wu, P. T. Cheng, P. M.
Sher, D. Ryono, A. V. Gavai, K. Poss, R. N. Girotra, P. J. McCann, A. B.
Mikkilineni, T. C. Dejneka, T. C. Wang, Z. Merchant, M. Morella,
C. M. Arbeeny, T. W. Harper, D. A. Slusarchyk, S. Skwish, A. D.
Russell, G. T. Allen, B. Tesfamariam, B. H. Frohlich, B. E. Abboa-
Offei, M. Cap, T. L. Waldron, R. J. George, D. Young, K. E. Dickinson
and A. A. Seymour, Bioorg. Med. Chem. Lett., 2004, 14, 3525–3529;
(b) W. N. Washburn, P. M. Sher, K. M. Poss, R. N. Girotra, P. J.
McCann, A. V. Gavai, A. B. Mikkilineni, A. Mathur, P. Cheng, T. C.
Dejneka, C. Q. Sun, T. C. Wang, T. W. Harper, A. D. Russell, D. A.
Slusarchyk, S. Skwish, G. T. Allen, D. E. Hillyer, B. H. Frohlich, B. E.
Abboa-Offei, M. Cap, T. L. Waldron, R. J. George, B. Tesfamariam,
C. P. Ciosek, D. Ryono, D. A. Young, K. E. Dickinson, A. A. Seymour,
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 6200–6204 | 6203
©