Published on Web 06/18/2005
Utilization of an Oxonia-Cope Rearrangement as a
Mechanistic Probe for Prins Cyclizations
Ramesh Jasti, Christopher D. Anderson, and Scott D. Rychnovsky*
Contribution from the Department of Chemistry, UniVersity of California, IrVine, California
92697-2025
Received March 22, 2005; E-mail: srychnov@uci.edu
Abstract: An oxonia-Cope rearrangement was used as an internal clock reaction to probe the mechanism
of the Prins cyclization reaction and the subsequent nucleophilic capture of the resultant tetrahydropyranyl
cation. The oxonia-Cope rearrangement was shown to occur rapidly under typical Prins cyclization conditions
when the oxocarbenium ion resulting from the rearrangement is similar to or lower in energy than the
starting oxocarbenium ion. Oxonia-Cope rearrangements can be disfavored by destabilizing the resultant
oxocarbenium ion or by stabilizing an intermediate tetrahydropyranyl cation. Stereoselectivity in the
nucleophilic capture was dramatically affected by the reactivity of the nucleophile and electrophile. More
reactive partners combined rapidly to give axial-substituted Prins products through a least-motion pathway.
High selectivity for the equatorial-substituted tetrahydropyran was observed for less reactive nucleophiles
and electrophiles.
Introduction
The Prins cyclization is a powerful transformation to generate
highly substituted tetrahydropyrans with excellent stereoselec-
tivity.1,2 Many variations of this transformation have been
investigated and continue to be explored. Although this cy-
clization has garnered significant attention from the chemical
community, the following two mechanistic aspects of this
transformation are not well understood: (1) the relative rates
of Prins cyclization versus a competing oxonia-Cope rearrange-
ment, and (2) the stereoselectivity of nucleophilic capture of
the resulting cation following cyclization (Figure 1).
Figure 1. Prins cyclization and oxonia-Cope rearrangement.
Cope rearrangements proceed rapidly at temperatures as low
as -78 °C. In fact, we have recently demonstrated a tandem
reaction in which an initial oxonia-Cope rearrangement is
followed by Prins cyclization to generate tetrahydropyranones
with quaternary centers (Figure 2).6 Inherent in the further
development and utilization of tandem reactions of this nature
is the need to have a general understanding of the rates of
oxonia-Cope rearrangements versus Prins cyclizations.
Prins cyclizations are typically highly selective for the all-
cis tetrahydropyran. A rationale for the all-cis stereoselectivity
has been set forth by computational work from Alder (Figure
3A).7 Alder suggests that initial Prins cyclization of an (E)-
oxocarbenium ion8 through a chair-like transition state leads to
tetrahydropyranyl cation 7. Tetrahydropyranyl cation 7 has
Several authors have reported the oxonia-Cope rearrangement
as a competitive process in Prins cyclizations and related
transformations.3,4 Although similar reactions such as Claisen
and Cope rearrangements typically require heating,5 oxonia-
(1) For reviews on the Prins cyclization, see: (a) Arundale, E.; Mikeska, L.
A. Chem. ReV. 1952, 52, 505-555. (b) Adams, D. R.; Bhatnagar, S. P.
Synthesis 1977, 661-672. (c) Snider, B. B. In The Prins Reaction and
Carbonyl Ene Reactions; Trost, B. M., Fleming, I., Heathcock, C. H., Eds.;
Pergamon Press: New York, 1991; Vol. 2, pp 527-561. (d) Overman, L.
E.; Pennington, L. D. J. Org. Chem. 2003, 68, 7143-7157.
(2) For recent work on the Prins cyclization, see: (a) Yadav, K. V.; Kumar,
N. V. J. Am. Chem. Soc. 2004, 126, 8652-8653. (b) Cossey, K. N.; Funk,
R. L. J. Am. Chem. Soc. 2004, 126, 12216-12217. (c) Hart, D. J.; Bennet,
C. E. Org. Lett. 2003, 5, 1499-1502. (d) Barry, C. S. J.; Crosby, S. R.;
Harding, J. R.; Huges, R. A.; King, C. D.; Parker, G. D.; Willis, C. L.
Org. Lett. 2003, 5, 2429-2432. (e) Miranda, P. O.; Diaz, D. D.; Padron,
J. I.; Bermejo, J.; Martin, V. S. Org. Lett. 2003, 5, 1979-1982. (f) Lopez,
F.; Castedo, L.; Mascarenas, J. L. J. Am. Chem. Soc. 2002, 124, 4218-
4219. (g) Crosby, S. R.; Harding, J. R.; King, C. D.; Parker, G. D.; Willis,
C. L. Org. Lett. 2002, 4, 3407-3410. (h) Crosby, S. R.; Harding, J. R.;
King, C. D.; Parker, G. D.; Willis, C. L. Org. Lett. 2002, 4, 577-580. (i)
Cho, Y. S.; Kim, H. Y.; Cha, J. H.; Pae, A. N.; Koh, H. Y.; Choi, J. H.;
Chang, M. H. Org. Lett. 2002, 4, 2025-2028.
(3) (a) Lolkema, L. D. M.; Semeyn, C.; Ashek, L.; Hiemstra. H.; Speckamp,
W. N. Tetrahedron 1994, 50, 7129-7140. (b) Roush, W. R.; Dilley, G. J.
Synlett 2001, 955-959. (c) Rychnovsky, S. D.; Marumoto, S.; Jaber, J. J.
Org. Lett. 2001, 3, 3815-3818. (d) Crosby, S. R.; Harding, J. R.; King, C.
D.; Parker, G. D.; Willis, C. L. Org. Lett. 2002, 4, 577-580. (e) Crosby,
S. R.; Harding, J. R.; King, C. D.; Parker, G. D.; Willis, C. L. Org. Lett.
2002, 4, 3407-3410. (f) Hart, D. J.; Bennet, C. E. Org. Lett. 2003, 5,
1499-1502.
(4) (a) Nokami, J.; Yoshizane, K.; Matsuura, H.; Sumida, S. I. J. Am. Chem.
Soc. 1998, 120, 6609-6610. (b) Sumida, S. I.; Ohga, M.; Mitani, J.;
Nokami, J. J. Am. Chem. Soc. 2000, 122, 1310-1313. (c) Loh, T.-P.; Hu,
Q.-Y.; Ma, L.-T. J. Am. Chem. Soc. 2001, 123, 2450-2451. (d) Loh, T.-
P.; Ken Lee, C.-L.; Tan, K.-T. Org. Lett. 2002, 4, 2985-2987. (e) Loh,
T.-P.; Hu, Q.-Y.; Ma, L.-T. Org. Lett. 2002, 4, 2389-2391. (f) Lee, C.-L.
K.; Lee, C.-H. A.; Tan, K.-T.; Loh, T.-P. Org. Lett. 2004, 6, 1281-1283.
(5) For reviews on the Claisen and Cope rearrangements, see: (a) Martin Castro,
A. M. Chem. ReV. 2004, 104, 2939-3002. (b) Rhoads, S. J.; Raulins, N.
R. Org. React. 1975, 22, 1-252.
(6) Dalgard, J. E.; Rychnovsky, S. D. J. Am. Chem. Soc. 2004, 126, 15662-
15663.
9
10.1021/ja0518326 CCC: $30.25 © 2005 American Chemical Society
J. AM. CHEM. SOC. 2005, 127, 9939-9945
9939