Communication
ChemComm
aggregates. These results confirm that the CH/p interactions Conflicts of interest
between the biphenyl and anthracene moieties in 3 are essen-
The authors declare the absence of any potential conflicts of
interest.
tial to promote the observed 2-D self-assembling behavior.
On the other hand, replacement of the methoxy group at the
end of the hydrophilic chain with a hydroxy group in 6 afforded
belt-like aggregates, which hierarchically assemble into sheet-
like aggregates (Fig. 4b and Fig. S13, S14, ESI†). Notably, the
thickness of the aggregates obtained from a solution at
5 ꢀ 10ꢁ6 M in 10/90 (v/v) 1-PrOH/H2O was B3–6 nm
(Fig. S14b and c, ESI†), which is much thinner than those
obtained for 3. The XRPD pattern of the nanosheets of 6 was
consistent with that observed for its single crystals, which also
show a windmill-shaped packing structure that is essentially
similar to that of 3 (Fig. S15 and S16, ESI†). Nanosheets of 6
exhibit negative zeta potentials (Fig. 4c), whereas the zeta
potentials results imply that the surface properties of the
biphenylanthracene-based nanosheets are tunable by varying
the terminal group of the hydrophilic chain.
Notes and references
1 (a) C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj,
Angew. Chem., Int. Ed., 2009, 48, 7752–7777; (b) G. R. Bhimanapati,
Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S.
Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou,
S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang,
J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak,
M. Terrones and J. A. Robinson, ACS Nano, 2015, 9, 11509–11539.
2 (a) X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric
and H. Dai, Nano Res., 2008, 1, 203–212; (b) D. Chimene, D. L. Alge
and A. K. Gaharwar, Adv. Mater., 2015, 27, 7261–7284.
3 (a) L. Jin, K. Yang, K. Yao, S. Zhang, H. Tao, S. T. Lee, Z. Liu and
R. Peng, ACS Nano, 2012, 6, 4864–4875; (b) Z. Liu, J. T. Robinson,
X. Sun and H. Dai, J. Am. Chem. Soc., 2008, 130, 10876–10877.
4 K. T. Nam, S. A. Shelby, P. H. Choi, A. B. Marciel, R. Chen, L. Tan,
T. K. Chu, R. A. Mesch, B. C. Lee, M. D. Connolly, C. Kisielowski and
R. N. Zuckermann, Nat. Mater., 2010, 9, 454–460.
In conclusion, we have introduced biphenylanthracene as a
useful motif to induce hydrophobicity and CH/p-interaction-
driven self-assembly into nanosheets. A combination of
biphenylanthracene moieties and long hydrophilic chains
affords amphiphiles that are able to engage in multiple
intermolecular CH/p interactions. The thus produced
windmill-shaped packing structures effectively form sheet-
like aggregates with a mm-scale lateral size at very low
concentrations. In this molecular design, changing the
terminal groups of the hydrophilic chains allows modifying
the surface character of the nanosheets. Further investiga-
tions into the development of functional materials based on
the two-dimensionality of the sheets are currently in progress
in our laboratory.
This work was supported by Grants-in-Aid for Young
Scientists (B) (KAKENHI grant JP17K14469 to S. O.) from the
Japan Society for the Promotion of Science (JSPS). This work
was partly supported by JSPS KAKENHI grant JP16H06280. The
authors thank Prof. Takahiro Sasamori (Nagoya City Univ.), and
Prof. Mao Minoura (Rikkyo Univ.), as well as Dr Masato Hirai,
Dr Naoki Ando, Mr Junichi Usuba, and Mr Masahiro Hayakawa
(Nagoya Univ.) for X-ray crystallographic analyses. The synchro-
tron X-ray crystallography experiment was performed at the
5 H. S. Jang, J. H. Lee, Y. S. Park, Y. O. Kim, J. Park, T. Y. Yang, K. Jin,
J. Lee, S. Park, J. M. You, K. W. Jeong, A. Shin, I. S. Oh, M. K. Kwon,
Y. I. Kim, H. H. Cho, H. N. Han, Y. Kim, Y. H. Chang, S. R. Paik,
K. T. Nam and Y. S. Lee, Nat. Commun., 2014, 5, 3665.
6 S. Ghosh, D. S. Philips, A. Saeki and A. Ajayaghosh, Adv. Mater.,
2017, 29, 1605408.
7 (a) A. S. Weingarten, R. V. Kazantsev, L. C. Palmer, M. McClendon,
A. R. Koltonow, A. P. S. Samuel, D. J. Kiebala, M. R. Wasielewski and
S. I. Stupp, Nat. Chem., 2014, 6, 964–970; (b) R. V. Kazantsev, A. J.
Dannenhoffer, A. S. Weingarten, B. T. Phelan, B. Harutyunyan,
T. Aytun, A. Narayanan, D. J. Fairfield, J. Boekhoven, H. Sai,
A. Senesi, P. I. O’Dogherty, L. C. Palmer, M. J. Bedzyk, M. R.
Wasielewski and S. I. Stupp, J. Am. Chem. Soc., 2017, 139, 6120–6127.
8 (a) E. Lee, J. K. Kim and M. Lee, Angew. Chem., Int. Ed., 2009, 48,
3657–3660; (b) H. J. Kim, T. Kim and M. Lee, Acc. Chem. Res., 2011,
44, 72–82.
9 (a) M. Vybornyi, A. V. Rudnev, S. M. Langenegger, T. Wandlowski,
¨
G. Calzaferri and R. Haner, Angew. Chem., Int. Ed., 2013, 52,
¨
11488–11493; (b) M. Vybornyi, A. Rudnev and R. Haner, Chem.
Mater., 2015, 27, 1426–1431.
10 (a) M. Nishio, M. Hirota and Y. Umezawa, The CH/p interaction. Evidence,
Nature, and Consequences, Wiley-VCH, New York, 1998; (b) M. Nishio,
Y. Umezawa, K. Honda, S. Tsuboyama and H. Suezawa, CrystEngComm,
2009, 11, 1757–1788; (c) H. Suezawa, S. Ishihara, Y. Umezawa,
S. Tsuboyama and M. Nishio, Eur. J. Org. Chem., 2004, 4816–4822.
11 (a) J. E. Anthony, Chem. Rev., 2006, 106, 5028–5048; (b) M. Nishio,
Y. Umezawa, J. Fantini, M. S. Weiss and P. Chakrabarti, Phys. Chem.
Chem. Phys., 2014, 16, 12648–12683.
12 C. P. Brock and J. D. Dunitz, Acta Crystallogr., Sect. B: Struct. Sci.,
1990, 46, 795–806.
BL40XU beamline of SPring-8 with the approval of the Japan 13 S. Saito, K. Nakakura and S. Yamaguchi, Angew. Chem., Int. Ed.,
2012, 51, 714–717.
14 (a) Y. Zheng, H. Zhou, D. Liu, G. Floudas, M. Wagner, K. Koynov,
Synchrotron Radiation Research Institute (JASRI; proposal
2018B1084, 2018B1275). The authors are grateful to Mr Tatsuo
M. Mezger, H. J. Butt and T. Ikeda, Angew. Chem., Int. Ed., 2013, 52,
Hikage for XRPD measurements.
4845–4848; (b) T. Ikeda, Langmuir, 2015, 31, 667–673.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 14950--14953 | 14953